Luận án Điều khiển công bằng luồng trong mạng chuyển mạch chùm quang
Trang 1
Trang 2
Trang 3
Trang 4
Trang 5
Trang 6
Trang 7
Trang 8
Trang 9
Trang 10
Tải về để xem bản đầy đủ
Bạn đang xem 10 trang mẫu của tài liệu "Luận án Điều khiển công bằng luồng trong mạng chuyển mạch chùm quang", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
Tóm tắt nội dung tài liệu: Luận án Điều khiển công bằng luồng trong mạng chuyển mạch chùm quang
quả đánh giá của mỗi giải thuật tập hợp chùm được tính là trung bình hiệu quả của 2500 lần tập hợp chùm liên tiếp, nên đảm bảo tính tin cậy và chính xác. Để đảm bảo độ tin cậy cho việc so sánh, các tham số phải được cài đặt thống nhất đối với tất cả các phương pháp. Trong đề xuất của BASTP, một cặp ngưỡng độ dài chùm (Lmin, Lmax) được yêu cầu xác định trước nhằm phục vụ cho việc tính toán 5 Trong luận án này, lưu lượng tải chuẩn hoá được tính bằng tỉ lệ giữa tốc độ đến với khả năng đáp ứng băng thông của liên kết ra. 37 độ dài ước tính. Tuy nhiên cặp ngưỡng này lại phụ thuộc vào ngưỡng thời gian tập hợp Ta, với một tốc độ luồng gói tin đến được cho. Do vậy, luận án thực hiện cài đặt các phương pháp IE-BADR, POQA, JK-BADR, BADR-EAT và MTBA-TP với cùng tải chuẩn hóa 0.5 và ngưỡng thời gian tập hợp Ta = 6ms. Các kết quả về giá trị trung bình của kích thước chùm tối đa và tổi thiểu (Lmin, Lmax) của các phương pháp này, được chỉ ra trong Bảng 2.2, sẽ giúp xác định được cặp ngưỡng độ dài chùm phù hợp nhất (Lmin, Lmax) cho BASTP. Cụ thể, cặp ngưỡng độ dài chùm được xác định cho BASTP trong trường hợp này là (130000, 170000), được tính trung bình từ các cặp kích thước chùm tối đa và tối thiểu của các phương pháp khác. Bảng 2.2 Trung bình kích thước tối đa và tổi thiểu của các chùm sinh ra Phương pháp IE-BADR POQA JK-BADR BADR-EAT MTBA-TP Độ dài tối thiểu (byte) 129000 133000 129000 180000 129000 Độ dài tối đa (byte) 172000 173000 176000 230000 169000 Lưu ý rằng phương pháp BADR-EAT có thời gian tập hợp chùm là Ta + To, thay vì chỉ là Ta, nên có kích thước chùm tối đa và tối thiểu lớn hơn so với các phương pháp khác; nhưng nếu xét về tốc độ đến (số bytes đến trong một đơn vị thời gian) nó là tương đương đối với tất cả các phương pháp. a. So sánh tỉ lệ lỗi ước tính trung bình Hình 2.3 mô tả so sánh về tỉ lệ lỗi ước tính trung bình giữa các phương pháp đã công bố, trong đó có thể thấy rằng các phương pháp dựa trên thống kê như BASTP, BADR-EAT và POQA cho lỗi ước tính trung bình thấp hơn so với các phương pháp còn lại. Để tìm hiểu sâu hơn về kết quả này, phân bố lỗi ước tính của 100 lần tập hợp chùm liên tiếp tiếp tục được xem xét. Như mô tả trong Hình 2.4, lỗi ước tính có phân bố xung quanh giá trị 0. Thực tế, lỗi ước tính xảy ra với một trong hai trường hợp sau: (1) kích thước chùm hoàn thành lớn hơn kích thước chùm ước tính, nên các gói tin thừa sẽ được chuyển sang cho lần tập hợp kế tiếp và (2) kích thước chùm hoàn thành nhỏ hơn kích thước chùm ước tính, lúc này có một sự lãng phí về băng thông do tài nguyên được đặt trước nhiều hơn yêu cầu cần sử dụng. Như mô tả trong Hình 2.4, phương pháp BASTP cho 38 kết quả tập hợp tốt nhất với phân bố lỗi ước tính gần với giá trị 0 nhất. Hình 2.3 So sánh tỉ lệ lỗi ước tính trung bình của IE-BADR, JK-BADR, POQA, BADR- EAT, MTBA-TP và BASTP với tải chuẩn hóa đến 0.5 Hình 2.4 Phân bố tỉ lệ lỗi ước tính của IE-BADR, JK-BADR, POQA, BADR-EAT, MTBA-TP và BASTP trong 100 lần tập hợp chùm liên tiếp Hình 2.5 Tỉ lệ lỗi ước tính trung bình gần như không đổi với tải chuẩn hóa từ 0.1 đến 0.9 Một câu hỏi được đặt ra là liệu lưu lượng tải đến có tác động đến lỗi ước tính 39 hay không. Luận án tiến hành khảo sát trường hợp tải chuẩn hóa thay đổi từ 0.1 đến 0.9 và kết quả trong Hình 2.5 chỉ ra rằng lỗi ước tính gần như không phụ thuộc vào mật độ lưu lượng tải đến. b. So sánh số gói tin thừa được chuyển cho lần tập hợp chùm tiếp theo Như đã phân tích trong Mục 2.1.2.2a, nguyên nhân của việc tạo ra các gói tin thừa là do chiều dài chùm ước tính thấp hơn so với kích thước thật của chùm được hoàn thành. Kết quả là các gói tin thừa sẽ chịu một độ trễ gia tăng bằng với thời gian tập hợp chùm Ta tiếp theo. Do đó việc làm giảm số gói tin thừa cũng đồng nghĩa với việc làm giảm đáng kể độ trễ trung bình của toàn mạng OBS. Hình 2.6 So sánh số gói tin thừa trong 100 chùm sinh ra đầu tiên Hình 2.6 so sánh số gói tin thừa của các phương pháp trong 100 lần tập hợp chùm liên tiếp, trong đó phương pháp BASTP có số gói tin thừa được chuyển cho chùm tiếp theo là thấp nhất. c. Phân tích cách chọn ngưỡng của phương pháp BASTP Như được mô tả trong các Hình 2.3, 2.4, 2.5 và 2.6, phương pháp BASTP luôn cho kết quả mô phỏng tốt nhất. Tuy nhiên, kết quả này thường đi kèm với việc chọn cặp giá trị ngưỡng (Lmin, Lmax). Một thử nghiệm về mặt mô phỏng đối với các cặp ngưỡng khác nhau được chỉ ra trong Bảng 2.3, trong đó nếu ngưỡng được chọn quá thấp thì ngoài lỗi ước tính khá lớn, số lượng chùm sinh ra cũng nhiều và điều này sẽ làm tăng khả năng tắc nghẽn ở trong mạng lõi. Ngược lại nếu ngưỡng được chọn cao sẽ làm cho lỗi ước tính tăng cao hơn nhưng bù lại số gói tin thừa sẽ giảm, có nghĩa là sẽ làm giảm được độ trễ tăng thêm. 40 Bảng 2.3 Ảnh hưởng cặp giá trị ngưỡng (Lmin, Lmax) đến lỗi ước tính (với tải chuẩn hóa 0.5) Số Số gói thừa Số chùm thừa Tổng số gói Cặp ngưỡng Lỗi ước tính chùm trong 100 chùm trong 100 trong 100 chùm (bytes) trung bình sinh ra đầu tiên chùm đầu tiên đầu tiên Lmin=10000, 0.05565637 2693 120 100 959 Lmax=50000 Lmin=50000, 0.050960653 2227 110 100 4775 Lmax=80000 Lmin=80000, 0.050175172 1720 99 99 8140 Lmax=120000 Lmin=120000, 0.036239469 401 70 70 13207 Lmax=160000 Lmin=160000, 0.158322079 172 4 4 15085 Lmax=200000 2.1.2.3 Nhận xét Tóm lại, các phương pháp tập hợp chùm nêu trên đều cố gắng giảm độ trễ đệm chùm (Ta + To) về thành độ trễ tập hợp (Ta). Tuy nhiên, các phương pháp này vẫn bộc lộ các điểm chưa được xử lý triệt để sau: (1) Lỗi ước tính là đáng kể, như được chỉ ra trong Hình 2.3. Lỗi ước tính sẽ gây ra lãng phí băng thông đặt trước nếu độ dài chùm ước tính dài hơn độ dài chùm được hoàn thành. Trong trường hợp kích thước chùm ước tính nhỏ hơn tổng gói tin đến thực tế tại một hàng đợi, các gói vượt quá sẽ được tập hợp trong chùm tiếp theo. Kết quả là các gói này phải chịu một độ trễ tăng thêm bằng độ trễ đệm chùm. (2) Các phương pháp IE-BADR, POQA, BADR-EAT, MTBA-TP và BASTP chưa sử dụng hiệu quả lỗi ước tính cho các lần tập hợp chùm tiếp theo. Trong [30], JK-BADR sử dụng lỗi ước tính để điều chỉnh trực tiếp độ dài ước tính cho lần tập hợp chùm tiếp theo. Tuy nhiên cách làm này là không trơn, nên lỗi ước tính không hội tụ được về một giá trị tối thiểu (lý tưởng là giá trị zero). (3) Để ước tính độ dài chùm hoàn thành, các phương pháp dựa trên thống kê được sử dụng như dựa trên các độ dài chùm đo được (trong POQA), dựa trên các ngưỡng thời gian trong M lần tập hợp chùm sau cùng nhất (trong BASTP) hay dựa 41 trên tốc độ trung bình của M gói tin đến sau cùng nhất (trong BADR-EAT). Các cách tiếp cận này giúp việc ước tính chính xác hơn, nhưng phải chịu chi phí tính toán lớn, đặc biệt khi tốc độ các gói tin đến tại nút biên OBS là rất cao. Việc giảm khối lượng tính toán bằng cách giảm cửa sổ thời gian ước tính một cách phù hợp do đó là rất cần thiết, nhưng vẫn phải đảm bảo được độ chính xác ước tính. (4) Các phương pháp IE-BADR, JK-BADR, POQA và BADR-EAT sử dụng kỹ thuật tập hợp chùm dựa trên ngưỡng thời gian cố định (Ta) và sau đó cố gắng ước tính độ dài chùm trong lần tập hợp chùm hiện thời ( Le ). MTBA-TP sử dụng một phương pháp lai nhưng vẫn với ngưỡng thời gian cố định (Ta) và một ngưỡng độ dài định trước (Lmin). Cải tiến hơn, BASTP sử dụng một phương pháp lai, trong đó các e ngưỡng thời gian (Ta) và ngưỡng độ dài ( L ) được ước tính trước một cách linh động. Tuy nhiên, do Ta được tính là trung bình các ngưỡng thời gian Tj của M lần tập hợp chùm trước đó, nên nó không phản ánh đúng xu hướng tăng/giảm gần đây nhất của lưu lượng đến; hơn nữa việc điều chỉnh từng bước Le sẽ không đáp ứng kịp khi lưu lượng đến bùng phát và tăng đột ngột. Một vấn đề khác mà BASTP phải đối mặt là việc chọn cặp giá trị Lmin và Lmax sao cho phù hợp như đã được chỉ ra trong Bảng 3.3. Các phân tích, so sánh và đánh giá này (đã được công bố trong Công trình [CT1]) chính là cơ sở để luận án đề xuất các cải tiến về tập hợp chùm giảm độ trễ được trình bày trong các mục tiếp theo. 2.1.3 Phương pháp tập hợp chùm giảm độ trễ iBADR 2.1.3.1 Giới thiệu về phương pháp ước tính tốc độ đến TW-EWMA Nhằm ước tính tốc độ của các gói tin đến tại một hàng đợi, Salad và cộng sự trong [23] đã đề xuất phương pháp TW-EWMA. Khác với các phương pháp ước tính khác thường đếm hết các gói tin đến trong các khoảng thời gian quan sát liên tục (chu kỳ ước tính), phương pháp TW-EWMA sử dụng một cửa sổ thời gian ước tính nhỏ hơn (Tw) nhằm giảm chi phí tính toán trên hệ thống (Hình 2.7). TW1 TW2 TW3 TWn Chu kỳ ước tính Chu kỳ ước tính Thời gian Hình 2.7 Phương pháp dự đoán theo cửa sổ của TW-EWMA Phương pháp TW-EWMA ước tính tốc độ đến trung bình của các gói tin dựa 42 trên 2 yếu tố: (1) tốc độ đến trung bình tích lũy trước đó (avg) và tốc độ đến trong cửa sổ quan sát hiện thời (cur) theo Công thức 2.9 e (1 ) avg cur (2.9) trong đó α là một trọng số thể hiện mối tương quan giữa tốc độ đến trung bình trước đó với tốc độ đến hiện thời và α có miền giá trị nằm trong đoạn [0, 1]; cur được xác định dựa trên độ dài chùm (Lw) trong cửa sổ quan sát (Tw) theo Công thức 2.10 Lw cur (2.10) Tw 2.1.3.2 Mô tả phương pháp tập hợp chùm giảm độ trễ iBADR Phương pháp tập hợp chùm giảm độ trễ được luận án đề xuất iBADR (improved Burst Assembly for Delay Reduction) cũng dựa trên ý tưởng gửi sớm gói tin điều khiển tại thời điểm t1 Ta To (ở đây Ta luôn lớn hơn To) và chùm tương ứng được gửi đi tại thời điểm t2 Ta ; kết quả là các gói tin được tập hợp trong chùm hiện thời sẽ giảm được một độ trễ To (xem Hình 2.3b). Nhưng do thông tin độ dài chùm cần được mang trong gói điều khiển tại thời điểm nó được gửi đi, nên việc ước tính độ dài chùm là cần thiết. Có nhiều cách tiếp cận khác nhau có thể giúp ước tính chính xác độ dài chùm, trong đó cách ước tính dựa trên thống kê thường có ưu điểm hơn đối với các sự kiện rời rạc, như được dẫn chứng ở Hình 2.3. Nhưng do phải tính toán trên một lượng dữ liệu lớn nên các phương pháp ước tính dựa trên thống kê thường có độ phức tạp lớn và việc giảm cửa sổ thời gian là một giải pháp nhằm giảm nhẹ thời gian tính toán. Luận án sử dụng phương pháp TW-EWMA (xem Mục 2.1.3.1) để ước tính tốc độ các gói tin đến, từ đó ước tính được độ dài chùm sẽ hoàn thành. Cửa số ước tính trong trường hợp này là Tw = Ta To. Tốc độ các gói tin đến được ước tính dựa trên TW-EWMA như sau: Lw e (1 ) avg (2.11) Ta To trong đó λavg tốc độ trung bình của các gói tin đến trước đó, Lw là số gói tin đến trong cửa sổ ước tính hiện thời và α là một trọng số thể hiện mức độ tác động của tốc độ trung bình và tốc độ hiện thời của các gói tin đến đối với việc ước tính. 43 Các tác giả trong [23] thiết lập α bằng một giá trị cố định (0.3), mà điều này thực tế không phản ảnh được bản chất thay đổi bất thường của lưu lượng đến; kết quả là lỗi ước tính là đáng kể. Luận án đề xuất thay đổi α một cách linh động chuyển biến theo tỉ lệ của tốc độ đến hiện thời (cur) so và tốc độ trung bình (λavg) của của các gói tin đến như Công thức 2.12. cur cur (2.12) 1 avg avg cur RE Để tăng độ chính xác của việc ước tính hơn nữa, luận án điều chỉnh linh động ngưỡng thời gian tập hợp chùm hiện thời dựa trên lỗi ước tính trung bình của các lần tập hợp chùm trước đó theo Công thức 2.13. (L Le ) R (1 ) R (2.13) E L Ngưỡng thời gian Ta cho lần tập hợp sau được xác định bằng tổng của ngưỡng thời gian Ta của lần tập hợp liền trước đó và một gia số điều chỉnh dựa trên lỗi ước tính trung bình (Ta R): Ta := Ta Ta R . Bằng cách này, ngưỡng thời gian tập hợp chùm hiện thời được đẩy về gần hơn với thời điểm độ dài hoàn thành chùm bằng với độ dài ước tính. Do đó, phương pháp tập hợp chùm giảm độ trễ cải tiến có tên gọi là iBADR. 2.1.3.3 Mô tả giải thuật iBADR Phương pháp iBADR có giải thuật được mô tả chi tiết như sau: Giải thuật 1: iBADR Input: Ta; // ngưỡng thời gian tập hợp To; // giá trị thời gian offset Sq; // danh sách các gói tin đến trong hàng đợi Output: ; // lỗi ước tính trung bình Begin 1 avg := 0; // tốc độ đến trung bình các gói tin 2 RE := 0; // khởi tạo lỗi ước tính 3 t1 := Ta To; // thời điểm gửi gói điều khiển 4 t2 := Ta; // thời điểm gửi chùm dữ liệu 5 M := 0; // số chùm sinh ra 44 6 b := 0; // khởi tạo bộ đệm chùm 7 KT:= false; // kiểm tra thời điểm gửi gói điều khiển 8 while (Sq ≠ ) do 9 p := gói tin đến hàng đợi; Sq ∶= Sq \ {p}; 10 Tq := sp; // sp là thời điểm đến gói tin p 11 b := b + Lp; // Lp là kích thước gói tin p 12 if ((Tq ≥ t1) and (KT = false)) then // giai đoạn 1: gửi gói điều khiển 13 L := b; // độ dài chùm hiện thời 14 λcur := L / (Ta To); // tốc độ đến các gói tin trong cửa số ước tính 15 α := λcur / (λcur + λavg); // điều chỉnh trọng số RE 16 λavg := (1 α) λavg + α λcur; e 17 L := L + To λavg; // độ dài chùm ước tính được 18 KT := true; // kiểm tra gói điều khiển đã gửi 19 end if 21 if (Tq ≥ t2) then // giai đoạn 2: gửi chùm dữ liệu 22 L := b; // độ dài chùm hoàn thành e 23 R := (1 α) + α (L L ) / L; 24 Ta := Ta + Ta R; // điều chỉnh Ta theo tỉ lệ lỗi ước tính R 25 b := 0; 26 t1 := (Ta To) + Tq; 27 t2 := Ta + Tq; 28 KT:= false; e 29 RE := RE + |L L | / L; // cập nhật lỗi ước tính 30 M := M + 1; // cập nhật số chùm sinh ra 31 := RE / M; // cập nhật lỗi ước tính trung bình 32 end if 33 end while 34 return ̅푅̅̅ ̅; End Độ phức tạp tính toán thời gian của giải thuật iBADR chủ yếu thực hiện ở vòng lặp while (từ dòng 8 đến dòng 33); do độ phức tạp của các lệnh trong vòng lặp while là O(1), nên độ phức tạp tính toán của giải thuật là O(N), ở đây N là số gói tin đến trong hàng đợi Sq. Độ phức tạp tính toán của giải thuật iBADR là tương đương với độ phức tạp tính toán của các giải thuật tập hợp chùm giảm độ trễ đã được công bố; do chúng đều tuân theo nguyên tắc tập hợp chùm là duyệt qua các gói tin đến 45 trong hàng đợi Sq. 2.1.3.4 So sánh và đánh giá dựa trên kết quả mô phỏng Với các mục tiêu mô phỏng bao gồm: - So sánh tỉ lệ lỗi ước tính trung bình ( ) của iBADR với các phương pháp đã công bố. - So sánh số gói tin thừa phải chuyển cho chùm tiếp theo trong 100 chùm sinh ra đầu tiên. RE Luận án sử dụng các tham số cài đặt trong phần này tương tự Mục 2.1.2.2. a. So sánh tỉ lệ lỗi ước tính trung bình Kết quả ở Hình 2.8 cho thấy rằng phương pháp iBADR có tỉ lệ lỗi ước tính nhỏ nhất. Điều này có được là do, đầu tiên việc cải tiến thuật toán TW-EWMA với α thay đổi linh hoạt theo tốc độ các gói tin đến (Công thức 2.12) đã làm cho việc ước tính trở nên chính xác hơn. Hơn nữa, việc điều chỉnh ngưỡng thời gian tập hợp chùm dựa trên lỗi ước tính (Công thức 2.13) đã giúp kéo độ dài chùm hoàn thành (L) về gần hơn với độ dài chùm ước tính ( Le ). Hình 2.8 Tỉ lệ lỗi ước tính trung bình của các phương pháp tập hợp chùm trước đây với phương pháp tập hợp chùm cải tiến (iBADR) Để thấy rõ hơn điều này, luận án trích xuất lỗi ước tính của 100 lần tập hợp chùm liên tiếp của iBADR và BASTP, phương pháp tập hợp chùm tốt nhất trong số các phương pháp đã được công bố trước đây. Kết quả Hình 2.9 cho thấy rằng tỉ lệ lỗi ước tính của iBADR phân bố xung quanh 0 (trục hoành), trong khi rất nhiều lỗi ước 46 tính của BASTP phân bố xa hơn. Hình 2.9 Phân bố lỗi ước tính của 100 chùm sinh ra đầu tiên của BASTP và iBADR b. So sánh số gói tin thừa trong 100 chùm sinh ra liên tiếp Tuy nhiên, kết quả Hình 2.9 cũng cho thấy rằng, lỗi ước tính của BASTP đa số chỉ phân bố ở miền âm (ở dưới trục hoành), trong khi của iBADR là xung quanh trục hoành. Điều này phản ánh một điều rằng, BASTP chỉ gây ra lãng phí băng thông do độ dài ước tính luôn lớn hơn độ dài chùm thực tế hoàn thành; trong khi iBADR có khá nhiều chùm hoàn thành có kích thước vượt quá độ dài chùm ước tính. Kết quả là các gói tin thừa phải được chuyển tập hợp vào chùm sau và chúng sẽ chịu một độ trễ tăng thêm bằng với thời gian tập hợp chùm của lần sau (Ta). Hình 2.10 mô tả một so sánh về số gói tin thừa của iBADR và các phương pháp đã công bố, trong đó iBADR có số chùm thừa là đáng kể. Hình 2.10 Số gói tin thừa trong 100 chùm sinh ra đầu tiên 47 2.1.3.5 Nhận xét Dựa trên kết quả mô phỏng, phương pháp iBADR cho tỉ lệ lỗi ước tính giảm hơn so với BASTP. Tuy nhiên, nếu xét về số gói tin thừa phải chuyển cho chùm tiếp theo thì iBADR sinh ra tương đối nhiều như Hình 2.10. Nguyên nhân của vấn đề này là do iBADR không sử dụng một giá trị ngưỡng độ dài để làm cận trên, kết quả là kích thước các chùm sinh ra có biên độ dao động khá ngẫu nhiên. Để giải quyết vấn đề này luận án đã đề xuất một phương pháp tập hợp chùm mới tốt hơn mà sẽ được trình bày trong phần tiếp theo. Phương pháp tập hợp chùm giảm độ trễ iBADR được đề xuất trong mục này đã được công bố trong [CT2]. 2.1.4 Phương pháp tập hợp chùm giảm độ trễ OBADR 2.1.4.1 Mô tả phương pháp tập hợp chùm giảm độ trễ OBADR Phương pháp OBADR (Optimal Burst Assembly for Delay Reduction) là một cải tiến tiếp theo của iBADR, trong đó ngoài áp dụng phương pháp ước tính độ dài chùm TW-EWMA với được điều chỉnh linh hoạt, quá trình tập hợp chùm là một kết hợp của 2 giai đoạn tập hợp: giai đoạn đầu dựa vào bộ đếm thời gian và giai đoạn thứ 2 dựa vào ngưỡng độ dài. Cụ thể của phương pháp OBADR được mô tả như sau: Giai đoạn 1: khi gói tin đầu tiên đến hàng đợi, bộ đếm thời gian (timer) được kích hoạt. Gói điLềeu khiển chỉ được gửi vào mạng lõi khi timer đạt đến ngưỡng Tw, là kích thước của cửa sổ thời gian. Độ dài ước tính ( ) đồng thời cũng được tính toán dựa trên phương pháp TW-EWMA với được điều chỉnh linh hoạt. Giai đoạn 2: Tiến trình tập hợp chùm vẫn được tiếp tục, nhưng bây giờ dựa trên ngưỡng độ dài ước tính . Chùm chỉ được hoàn thành khi số lượng gói tin đến trong hàng đợi đạt đến ngưỡng . Với OBADR, lỗi ước tính sẽ được giảm thiểu; đặc biệt lỗi ước tính sẽ bằng 0 khi các gói tin đến có cùng kích thước. Trong trường hợp các gói tin đến có kích thước thay đổi, điều kiện để hoàn thành một chùm là tổng độ dài các gói tin trong hàng đợi nằm trong đoạn [ maxp, ], trong đó maxp là kích thước lớn nhất có thể của các gói tin đến. Rõ ràng cách tiếp cận này có gây ra một ít lãng phí về mặt băng 48 thông, tức là băng thông được đặt trước dựa trên chiều dài ước tính có thể nhiều hơn so với độ dài thực tế của chùm được hoàn thành; nhưng nó đảm bảo rằng không có gói tin thừa nào bị chuyển sang chùm tiếp sau và do đó không có độ trễ tăng thêm, đây là yếu tố tối ưu của OBADR. 2.1.4.2 Mô tả giải thuật OBADR Giải thuật OBADR được mô tả chi tiết như sau: Giải thuật 2: OBADR Input: RE Ta; // ngưỡng thời gian tập hợp To; // giá trị thời gian offset Sq; // danh sách các gói tin đến trong hàng đợi maxp; // kích thước lớn nhất của gói tin đến trong hàng đợi Sq Output: ; // lỗi ước tính trung bình Begin 1 avg := 0; // tốc độ đến trung bình các gói tin 2 RE := 0; // khởi tạo lỗi ước tính 3 t1 := Ta To; // thời điểm gửi gói điều khiển 4 M := 0; // số chùm sinh ra 5 b := 0; // khởi tạo bộ đệm chùm 6 KT := false; // kiểm tra thời điểm gửi gói điều khiển 7 while (Sq ≠ ) do Le 8 p := gói tin đến hàng đợi; Sq ∶= Sq \ {p}; 9 Tq := sp; // sp là thời điểm đến gói tin p 10 b := b + Lp; // Lp là kích thước gói tin p 11 if ((Tq ≥ t1) and (KT = false)) then // Giai đoạn 1: gửi gói điều khiển 12 L := b; // độ dài chùm hiện thời 13 λcur := L / (Ta To); // tốc độ đến các gói tin trong cửa số ước tính 14 α := λcur / (λcur + λavg); // điều chỉnh trọng số 15 λavg := (1 α) λavg + α λcur; 16 := L + To λavg; // độ dài chùm ước tính được 17 KT
File đính kèm:
- luan_an_dieu_khien_cong_bang_luong_trong_mang_chuyen_mach_ch.pdf
- Dong-gop-moi-tieng-Anh_LeVanHoa.pdf
- Dong-gop-moi-tieng-Viet_LeVanHoa.pdf
- Tom tat luan_an_BV_DaihocHue.pdf
- Tom_tat_luan_an_Cap_DHH_tieng_Anh.pdf
- Trich yeu luan an_LeVanHoa.pdf