Luận án Nghiên cứu hiệu năng bảo mật lớp vật lý của một số hệ thống thông tin vô tuyến sử dụng mã Fountain

Luận án Nghiên cứu hiệu năng bảo mật lớp vật lý của một số hệ thống thông tin vô tuyến sử dụng mã Fountain trang 1

Trang 1

Luận án Nghiên cứu hiệu năng bảo mật lớp vật lý của một số hệ thống thông tin vô tuyến sử dụng mã Fountain trang 2

Trang 2

Luận án Nghiên cứu hiệu năng bảo mật lớp vật lý của một số hệ thống thông tin vô tuyến sử dụng mã Fountain trang 3

Trang 3

Luận án Nghiên cứu hiệu năng bảo mật lớp vật lý của một số hệ thống thông tin vô tuyến sử dụng mã Fountain trang 4

Trang 4

Luận án Nghiên cứu hiệu năng bảo mật lớp vật lý của một số hệ thống thông tin vô tuyến sử dụng mã Fountain trang 5

Trang 5

Luận án Nghiên cứu hiệu năng bảo mật lớp vật lý của một số hệ thống thông tin vô tuyến sử dụng mã Fountain trang 6

Trang 6

Luận án Nghiên cứu hiệu năng bảo mật lớp vật lý của một số hệ thống thông tin vô tuyến sử dụng mã Fountain trang 7

Trang 7

Luận án Nghiên cứu hiệu năng bảo mật lớp vật lý của một số hệ thống thông tin vô tuyến sử dụng mã Fountain trang 8

Trang 8

Luận án Nghiên cứu hiệu năng bảo mật lớp vật lý của một số hệ thống thông tin vô tuyến sử dụng mã Fountain trang 9

Trang 9

Luận án Nghiên cứu hiệu năng bảo mật lớp vật lý của một số hệ thống thông tin vô tuyến sử dụng mã Fountain trang 10

Trang 10

Tải về để xem bản đầy đủ

pdf 172 trang nguyenduy 28/06/2024 1060
Bạn đang xem 10 trang mẫu của tài liệu "Luận án Nghiên cứu hiệu năng bảo mật lớp vật lý của một số hệ thống thông tin vô tuyến sử dụng mã Fountain", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

Tóm tắt nội dung tài liệu: Luận án Nghiên cứu hiệu năng bảo mật lớp vật lý của một số hệ thống thông tin vô tuyến sử dụng mã Fountain

Luận án Nghiên cứu hiệu năng bảo mật lớp vật lý của một số hệ thống thông tin vô tuyến sử dụng mã Fountain
 của  X,Y sẽ là: 
 51 
 f x exp x . (2.3) 
  X,Y X,Y X,Y 
 Ta cũng ký hiệu  là độ lợi kênh pha đinh Rayleigh giữa ăng-ten phát 
 Sm ,Y
thứ m của S và nút Y, với mN 1,2,...,S . Giả sử rằng các độ lợi kênh truyền 
 là độc lập và đồng nhất (independent and identically distributed: i.i.d.) 
với nhau, cụ thể là  với mọi m. 
 Sm ,Y S,Y
 Xem xét quá trình truyền dữ liệu giữa máy phát X và máy thu Y, với sự 
xuất hiện của suy giảm phần cứng, tín hiệu nhận được tại Y được cho như 
trong [67, 68] là: 
 y PXX,Y h x 0  t,X r,Y n Y , (2.4) 
với x0 là dữ liệu nguồn, PX là công suất phát của X, hX,Y là hệ số kênh 
truyền của liên kết X Y, t,X và r,Y là nhiễu sinh ra do phần cứng không lý 
tưởng tại X và Y, tương ứng và nY là nhiễu Gauss tại Y. 
 Tương tự, các kết quả đo lường và khảo sát lý thuyết như trong [67, 68], 
đã thể hiện t,X, r,Y và nY được mô hình là các biến ngẫu nhiên Gauss với 
trung bình bằng 0 và phương sai được cho, tương ứng là 
 2 22 2
 var t,X  t , var  r,Y  rXX,YP h , var n Y  , (2.5) 
 2 2
trong đó, t và r là các mức suy giảm phần cứng tại X và Y, tương ứng. 
 Do đó, HWI được sử dụng để định lượng sự sai lệch giữa dữ liệu nguồn 
xác định trước x0 và tín hiệu thực tế trong các máy thu/phát RF. Lưu ý rằng, 
khi tr 0, có nghĩa là phần cứng lý tưởng tại máy phát và máy thu. 
 Hơn nữa, nhiễu gây ra do suy giảm phần cứng của máy thu/phát được 
 22 2
xem như nguồn nhiễu bổ sung của phương sai t r Ph X X,Y , nên ta xác 
 22
định mức độ suy giảm phần cứng tại cả máy phát và máy thu là  tr  . 
 Từ các công thức (2.4) và (2.5), SINR tức thời được tính bởi 
 52 
 2
 PhX X,Y
  
 X,Y 2 22 2
 t  r Ph X X,Y 
 2
 Ph
 X X,Y , (2.6) 
 222
 PhX X,Y 
 2 2 2
với  tr  là tổng mức suy giảm phần cứng. 
 2.2.1.2. Điều kiện đối với công suất phát của nút nguồn thứ cấp 
 Giả sử S sử dụng ăng-ten phát thứ m để gửi gói mã hóa đến D với công 
suất phát PS. Như vậy, SINR nhận được tại PR được viết như sau (xem [98]): 
 P 
  PT PT,PR , (2.7) 
 PT,PR 22PP   
 P PT PT,PR S Sm ,PR
 2 2
với PPT là công suất phát của PT,  là phương sai của nhiễu cộng tại PR và P 
là mức suy giảm phần cứng tổng cộng tại PT và PR. Để đơn giản cho việc trình 
bày và tính toán, ta giả sử phương sai của nhiễu cộng tại tất cả các thiết bị thu 
đều có phân bố Gauss với giá trị trung bình bằng 0 và phương sai bằng  2. 
 Đặt  P là giá trị ngưỡng dương xác định trước mà ở đó PR không thể 
giải mã thành công dữ liệu nhận được từ PT, nếu SINR thu được  PT,PR nhỏ 
hơn  P. Thật vậy, xác suất của sự kiện này xảy ra được tính như sau: 
 P Pr  PT,PR  P . (2.8) 
 2 2
 Bổ đề 1: Nếu 1 PP 0, thì P 1 và ngược lại nếu 1 PP 0, biểu 
thức xác suất của P được viết dưới dạng chính xác là 
 2 2
 S,PR 1  P  P P PT   
 1 exp PT,PR P . (2.9) 
 P 11 22 PPP    
 S,PR P P PT PT,PR P S P P PT
 Chứng minh: Xem chứng minh và các ký hiệu trong mục A1, Phụ lục A. 
 53 
 Để mạng sơ cấp đảm bảo chất lượng dịch vụ: PP , công suất phát tối 
đa mà S có thể sử dụng được tính như sau: 
 2 2
 S,PR 1  P  P P PT 1   
 P 0, exp PT,PR P 1 , (2.10) 
 S   1  1 2 P
 PT,PR P P P P PT
với xx,0 max ,0 và P là ngưỡng dừng mong muốn của mạng sơ cấp 
(mạng sơ cấp mong muốn ngưỡng dừng phải nhỏ hơn hoặc bằng giá trị này). 
Công thức (2.10) có ý nghĩa rằng nếu có sự giao thoa từ mạng thứ cấp làm 
cho PP thì mạng sơ cấp sẽ không cho phép mạng thứ cấp hoạt động nữa, 
tức là mạng thứ cấp phải im lặng và công suất phát của nút nguồn thứ cấp 
phải thiết lập về 0 PS 0, đồng nghĩa PR không cho phép S sử dụng chung 
phổ tần với mình. Ta cũng quan sát từ công thức (2.10) rằng công suất phát 
tối đa của tất cả các ăng-ten phát tại S đều như nhau P  P m và cũng là 
 SSm 
một hàm của PPT. Hơn nữa, khi PPT đủ lớn PPT , ta có xấp xỉ sau: 
 2
 PPT 
 * S,PR 1  P  P  P
 PPPS S PT. (2.11) 
 PT,PR 1  P  P
 Từ (2.11), khi PPT đủ lớn, công suất phát của S tăng tuyến tính theo PPT. 
 2.2.1.3. Lựa chọn ăng-ten phát tại nút nguồn thứ cấp 
 Trước khi gửi một gói mã hóa đến D, S lựa chọn ăng-ten phát tốt nhất 
của mình theo tiêu chí sau: 
  max , (2.12) 
 S* ,D Sm ,D 
 a mN 1,2,..., S
 * *
trong đó, a là ăng-ten được chọn để phát dữ liệu tại S, với aN 1,2,...,S . 
Công thức (2.12) có nghĩa rằng S sẽ lựa chọn ăng-ten đạt được độ lợi kênh 
đến D lớn nhất để gửi dữ liệu. Hơn nữa, khi  là độc lập và đồng nhất với 
 Sm ,D
nhau thì hàm phân bố tích lũy của  S ,D sẽ là 
 a*
 54 
 N
 F x 1 exp  x S 
 S ,D S,D 
 a*
 NS
 1 1m Cm exp m x . (2.13) 
  NS S,D 
 m 1
 Do đó, SINR nhận được tại D và E để giải mã mỗi gói mã hóa của S 
trong một khe thời gian sẽ lần lượt đạt được như sau: 
 PS S ,D
 a*
  D 22, (2.14) 
 DPP S  S ,D PT  PT,D 
 a*
 PS S ,E
 a*
  E 22, (2.15) 
 EPP S  S ,E PT  PT,E 
 a*
 2 2
trong đó, D và E lần lượt là tổng mức suy giảm phần cứng trên các kênh 
liên kết SD và S E. 
 Tiếp theo, giả sử rằng một gói mã hóa có thể được giải mã thành công 
nếu SINR nhận được tại D và E lớn hơn một ngưỡng  th xác định trước. 
Ngược lại, gói mã hóa đó sẽ không được giải mã thành công. Vì vậy, xác suất 
mà D và E không thể nhận thành công một gói dữ liệu sẽ được viết như sau: 
 D Pr  D  th , (2.16) 
 E Pr  E  th . (2.17) 
 Tiếp theo, lưu ý rằng xác suất mà D và E có thể nhận được một gói mã 
hóa thành công sẽ lần lượt là: 1 D và 1. E Hơn nữa, giả sử rằng các xác 
suất D và E không thay đổi trong mỗi khe thời gian và do đó, ta có thể bỏ 
qua chỉ số thời gian trong các ký hiệu này. 
 Do hệ thống bị ràng buộc độ trễ, số khe thời gian được sử dụng để phát 
 pkt
các gói mã hóa bị giới hạn bởi Tác giả ký hiệu NNNN req max là 
số khe thời gian được sử dụng bởi nút nguồn (hoặc số gói mã hóa được phát 
 pkt pkt
bởi nút nguồn), ND và NE là số góiNmax mã. hóa nhận được bởi nút D và nút E 
 55 
sau khi nút nguồn dừng truyền, tương ứng. Bây giờ, tác giả đưa ra biểu thức 
tính xác suất giải mã và bảo mật thông tin thành công (SS) của quá trình 
truyền từ S đến D như sau: D E
 pkt pkt pkt pkt
 SS Pr NNNNNND req , E req | max . (2.18) 
 Biểu thức (2.18) ngụ ý rằng nút đích có thể nhận đủ số gói mã hóa 
 pkt pkt pkt pkt
 NND req trước nút nghe lén NNE req khi số khe thời gian được sử 
dụng NN max . 
 Kế tiếp, tác giả đưa ra biểu thức xác suất thu chặn (IP), được định nghĩa 
 pkt
là xác suất mà nút nghe lén có thể đạt được thành công Nreq gói mã hóa trước 
hoặc cùng lúc với nút đích. 
 pkt pkt pkt pkt
 IP Pr NNNNNNE req , D req | max . (2.19) 
 Lưu ý từ biểu thức (2.19) rằng khi nút nghe lén đạt được gói mã 
hóa, nút này không cần nhận thêm số gói mã hóa nữa. Thay vào đó, E sẽ bắt 
đầu giải mã dữ liệu gốc của nút nguồn. 
 2.2.2. Phân tích hiệu năng 
 2.2.2.1. Xác suất của và 
 2 2
 Bổ đề 2: Nếu 1 D th 0, thì D 1 và nếu 1 D th 0, D có thể 
được biểu diễn dưới dạng chính xác là 
 m m
 NS 1 C 
 NS PT,D
 D 1  exp m  S,D  D . (2.20) 
 m 1 PT,D m  S,D  D
 Chứng minh: Xem chứng minh và các ký hiệu trong mục A2, Phụ lục A. 
 Tiếp đến, khi công suất phát của PT đủ lớn, biểu thức xấp xỉ của đạt 
được như sau: 
 N
 PPT S 
 1 1mCm PT,D , (2.21) 
 D  NS *
 m 1 PT,D m  S,D  D
 56 
với 
 * PT,PR 1  P  P  th
 D 22. (2.22) 
 S,PR 11  D  th  P  P  P
 Quan sát từ các công thức (2.21) và (2.22), ta thấy rằng khi PPT đủ lớn 
thì D không phụ thuộc vào PPT nữa. Điều này có nghĩa rằng do ảnh hưởng 
của nhiễu đồng kênh và khi công suất phát của PT tăng, công suất phát của 
mạng thứ cấp cũng tăng, dẫn đến SNR ở các giá trị công suất phát sơ cấp cao 
và sẽ không phụ thuộc vào công suất phát của mạng sơ cấp nữa. 
 2 2
 Bổ đề 3: Nếu 1 E th 0, thì E 1 và nếu 1 E th 0, E được tính 
chính xác là 
 PT,E
 E 1 exp  S,E  E , (2.23) 
 PT,E  S,E  E
với 
 2
 PPT th   th
 EE 22, . (2.24) 
 11 E  th PP S  E  th S
 Hơn nữa, khi PPT , E cũng không phụ thuộc vào PPT , cụ thể: 
 PPT 
 PT,E
 E 1,* (2.25) 
 PT,E  S,E  E
với 
 * PT,PR 1  P  P  th
 E 22. (2.26) 
 S,PR 11  E  th  P  P  P
 2.2.2.2. Xác suất giải mã và bảo mật thông tin thành công (SS) 
 Tổng xác suất của SS trong (2.18) có thể được viết lại là 
 pkt
 Nmax Nreq 1
 pkt pkt pkt
 SS  Pr ND N req | N w Pr N E q | N w . (2.27) 
 pkt
 wN req q 0
 57 
 pkt pkt
 Trong (2.27), Pr ND N req | N w là xác suất mà D có thể nhận thành 
 pkt
công ND gói mã hóa khi số khe thời gian được sử dụng bởi S là w. Khi quá 
trình truyền dữ liệu giữa S và D kết thúc tại khe thời gian thứ w, với 
 pkt pkt pkt
 w Nreq w N max , thì Pr ND N req | N w được tính tương tự như [38, 
công thức (8)]: 
 pkt pkt pkt
 pkt pkt wN req Nreq w N req
 Pr ND N req | N w Cw 1 1 D D . (2.28) 
 pkt
 Hơn nữa, Pr NE q | N w trong (2.28) thể hiện là xác suất mà E chỉ 
 pkt
có thể nhận thành công q gói mã hóa, với 0, qNreq khi S kết thúc quá 
trình truyền sau khi đã gửi w gói mã hóa và được tính như sau: 
 pkt q q w q
 Pr NEEE q | N w Cw 1 . (2.29) 
 Thay thế (2.28) và (2.29) vào (2.27), biểu thức chính xác dạng tường 
minh của SS được cho là 
 pkt
 N Nreq 1
 max pkt pkt pkt
 wN req Nreq w N req q q w q
 SS  CCww 1 1 D D 1 E E . (2.30) 
 pkt q 0
 wN req 
 2.2.2.3. Xác suất thu chặn (IP) 
 Xác suất thu chặn trong (2.19) có thể được viết lại bởi 
 Nmax
 pkt pkt
 IP  Pr NE N req | N w 
 pkt
 wN req
 pkt
 Nreq 1
 pkt pkt pkt
 Pr ND N req | N w  Pr N D r | N w . (2.31) 
 r 0
 pkt pkt
 Trong (2.31), Pr NE N req | N w là xác suất mà E có thể nhận đủ số 
gói mã hóa trong w khe thời gian, có thể được tính tương tự như (2.28) là 
 pkt pkt pkt
 pkt pkt wN req Nreq w N req
 Pr NE N req | N w Cw 1 1 E E . (2.32) 
 58 
 pkt pkt
 Tiếp theo, Pr ND N req | N w trong (2.31) được tính bởi (2.28) và 
 pkt
 Pr ND r | N w trong (2.31) có thể đạt được bởi 
 pkt r r w r
 Pr NDDD r | N w Cw 1 . (2.33) 
 Thay thế (2.28), (2.32) và (2.33) vào (2.31), biểu thức dạng tường minh 
của IP được đưa ra như sau: 
 N
 max pkt pkt pkt
 wN req Nreq w N req
 IP  Cw 1 1 E E 
 pkt
 wN req
 pkt
 Nreq 1
 pkt pkt pkt
 wN req Nreq w N req r r w r
 CCww 1 1 D D  1 D D . (2.34) 
 r 0
 Để tính xác suất IP, ta xét hai trường hợp: Trường hợp 1: D có thể đạt 
 pkt
được Nreq gói mã hóa từ S, tuy nhiên E cũng đạt được ít nhất gói mã hóa 
trong trường hợp này. Trường hợp 2: D không thể nhận đủ gói mã hóa 
sau khi S đã gửi hết Nmax gói mã hóa, tuy nhiên E lại có thể đạt được ít nhất 
 gói mã hóa. Trong công thức (2.34), số hạng đầu tiên là xác suất của 
trường hợp 1 và số hạng thứ hai là xác suất của trường hợp 2. 
 Lưu ý rằng, xác suất giải mã và bảo mật thông tin thành công có thể đạt 
được khi nút đích có thể nhận đủ số gói mã hóa từ nút nguồn trước nút nghe 
lén khi số khe thời gian được sử dụng nhỏ hơn hoặc bằng Nmax. Mặt khác, dữ 
 pkt
liệu gốc của S bị thu chặn khi nút E đạt được Nreq gói mã hóa, bất kể nút 
nguồn sẽ phát các gói mã hóa trong những khe thời gian tiếp theo, thay vào đó 
E sẽ bắt đầu giải mã dữ liệu gốc của S. 
 Cuối cùng, thay các biểu thức của D và E đã đạt được trong Mục 
2.2.2.1 vào (2.30) và (2.34), ta đạt được các biểu thức dạng tường minh 
(closed-form) chính xác cho SS và IP. 
 59 
 2.2.3. Các kết quả mô phỏng 
 Trong phần này, tác giả thực hiện các mô phỏng Monte Carlo để kiểm 
chứng các công thức đã được trình bày ở Phần 2.2.2. Trong môi trường mô 
phỏng, các nút mạng trong hệ trục tọa độ Đề-các (Descartes), với nút S được 
đặt tại gốc tọa độ (0,0), trong khi tọa độ của D là (1,0). Ta cũng đặt PT và PR 
cố định tại các vị trí PT(0.5,0.5) và PR(0.5,0), tương ứng. Để sự ảnh hưởng 
của giao thoa đồng kênh từ PT tác động đến D và E là đồng đều, cũng như 
khoảng cách từ S đến D và E là như nhau, ta cũng đặt E ở vị trí (1,0) (xem 
như E ở rất gần D). Do đó, ta dễ dàng tính được khoảng cách giữa các nút như 
sau: ddS,D S,E 1, dPT,PR 0.5, dS,PR 0.5 và ddPT,D PT,E 1/ 2. Giả sử hệ 
số suy hao đường truyền được cố định bằng 3  3, tham số đặc trưng các 
 3
  1,  1/ 8
kênh truyền là S,D S,E PT,PR S,PR và PT,D PT,E 1/ 2 . 
Trong tất cả các mô phỏng, tác giả cũng cố định các tham số hệ thống khác 
 2 pkt
như sau:  1, Nreq 5,  th 0.3 và P 0.1. Đối với tham số suy giảm 
 2 22
phần cứng, ta giả sử: P 0 và DE . 
 Hình 2.2 nhằm mục đích để kiểm chứng các công thức tính xác suất D , 
 E và ta nhận thấy PS (dB) được tìm ra theo công thức (2.10) là một hàm phụ 
thuộc PPT (dB), nên vẽ theo (dB) thì cũng chính là vẽ theo (dB). Do 
đó, tác giả biểu diễn các biểu thức xác suất D và theo giá trị khác nhau 
của (dB), với số ăng-ten tại S bằng 7, số gói mã hóa tối đa mà S có thể 
gửi D là 10 gói và các mức suy giảm phần cứng trên các kênh dữ liệu và kênh 
nghe lén đều bằng 0.1. Ta thấy D và giảm khi PPT tăng nhưng các giá trị 
này sẽ hội tụ về các giá trị tiệm cận khi đủ lớn. Ta cũng thấy rằng 
thấp hơn rất nhiều so với bởi S sử dụng TAS để gửi dữ liệu đến D. 
 60 
 Hình 2.2: Xác suất của và vẽ theo (dB) khi và 
 D E PPT NS 7, Nmax 10
 22
DE 0.1.
 22
 PPT Nmax 10 DE 0.
 Hình 2.3: Xác suất SS vẽ theo (dB) khi và 
 61 
Hình 2.4: Xác suất IP vẽ theo (dB) khi và 
 22
 PPT Nmax 10 DE 0.
 2 22
 D NS 5 DE .
 Hình 2.5: Xác suất SS vẽ theo khi và 
 62 
 Hình 2.6: Xác suất IP vẽ theo khi và 
 Hình 2.3 và 2.4 vẽ các xác suất SS và IP theo công suất phát của PT. 
Trong cả hai hình vẽ, các tham số hệ thống được cố định bởi Nmax 10 và 
 22
DE 0. Trong Hình 2.3, giá trị của SS tăng khi PPT tăng nhưng giá trị của 
SS sẽ tiến về hằng số khi PPT đủ lớn. Điều này có thể được giải thích dựa vào 
kết quả đạt được trong Hình 2.2, đó là khi PPT tăng thì xác suất D giảm, 
nhưng khi PPT đủ lớn thì D sẽ không đổi nữa. Hình 2.3 cũng cho thấy rằng 
khi tăng số lượng ăng-ten phát NS, xác suất dữ liệu nguồn có thể nhận được 
 N 5 22 .
thành công và bảo mật tại D cũng tăng lênS đáng kể. DE
 2
 Ngược lại với SS, Hình 2.4E cho thấy rằng xác suất mất bảo mật của hệ 
thống sẽ giảm khi nút nguồn được trang bị nhiều ăng-ten hơn. Tương tự như 
giá trị của SS, giá trị của IP cũng tăng khi PPT tăng và đạt đến giá trị bão hòa 
khi PPT đủ lớn. 
 Hình 2.5 và 2.6 cho thấy sự ảnh hưởng của suy giảm phần cứng lên xác 
suất SS và IP của hệ thống. Như ta có thể thấy, giá trị của SS và IP giảm 
 63 
 2
nhanh khi giá trị D tăng từ 0 lên 1. Ta thấy trong Hình 2.5 rằng SS tăng khi 
giá trị Nmax tăng. Tuy nhiên, khi Nmax tăng thì giá trị IP cũng tăng do nút 
 pkt
nghe lén có nhiều cơ hội nhận đủ Nreq gói mã hóa. 
 Cuối cùng, từ các Hình 2.2 đến 2.6, các kết quả mô phỏng đã kiểm chứng 
sự chính xác của các kết quả phân tích lý thuyết. 
2.3. MÔ HÌNH 2: MẠNG MIMO TAS/SC SỬ DỤNG MÃ FOUNTAIN 
 2.3.1. Mô hình hệ thống 
 NS
 Hình 2.7: Mô hình nghiên cứu đề xuất. 
 Hình 2.7 miêu tả mô hình hệ thống của giao thức đề xuất, trong đó một 
nút nguồn S (Source) muốn gửi dữ liệu đến một nút đích D (Destination), 
trong sự xuất hiện của một nút nghe lén E (Eavesdropper) cố gắng nghe lén 
dữ liệu của S. Giả sử, S được trang bị với ăng-ten phát, D và E lần lượt có 
 ND và NE ăng-ten thu, sử dụng kỹ thuật SC để kết hợp các tín hiệu thu. 
Trong thực tế, việc thực hiện kỹ thuật SC đơn giản hơn các kỹ thuật kết hợp 
khác như kỹ thuật EGC hay MRC bởi vì bộ thu SC chỉ cần chọn liên kết có 
 64 
SNR lớn nhất để giải mã dữ liệu. Việc lựa chọn SC tại máy thu chủ yếu được 
áp dụng trong điều kiện máy thu bị ràng buộc hạn chế về tài nguyên, ví dụ 
nhưpkt máy thu chỉ có một bộ khuếch đại hoặc chỉ cho phép thực hiện với một 
 Nreq
chíp đơn để giảm giá thành và công suất tiêu thụ. Ngoài ra, việc áp dụng SC 
tại máy nghe lén đa ăng-ten tương đương với trường hợp nhiều máy nghe lén 
đơn ăng-ten độc lập với nhau. Ta cũng quan sát tại Hình 2.7 rằng hai nút D và 
E đều chịu ảnh hưởng bởi nhiễu gây ra từ M nguồn giao thoa đơn ăng-ten 
được ký hiệu là I1 ,I 2 ,...,IM 1 và I.M 
 Tương tự như phần trình bày trong mô hình đề xuất 1, hệ thống sử dụng 
mã Fountain, nút S sẽ chia dữ liệu gốc của mình thành L gói nhỏ có độ dài 
bằng nhau và thực hiện phép XOR với nhau để tạo ra các gói mã hóa. Tiếp 
theo, S gửi các gói mã hóa đến D trong những khe thời gian trực giao theo 
phương pháp TDMA và do tính chất mở của kênh truyền vô tuyến, nút E cũng 
có thể nhận được những gói mã hóa này. Dữ liệu gốc có thể được khôi phục 
nếu D (E) nhận thành công ít nhất gói mã hóa, khi D nhận đủ số gói mã 
hóa cần thiết cho giải mã dữ liệu gốc thì nút D ngay lập tức gửi thông điệp 
ACK để nút S dừng truyền. Trong trường hợp này, nếu E không thể nhận đủ 
 pkt
 Nreq gói mã hóa thì E sẽ không thể giải mã được dữ liệu nguồn, do đó quá trình 
truyền dữ liệu là thành công và bảo mật. 
 2.3.1.1. Mô hình kênh truyền 
 Giả sử, kênh truyền giữa các thiết bị là kênh pha đinh Rayleigh và để 
thuận tiện cho việc thể hiện, ta sẽ bỏ qua việc ký hiệu chỉ số thời gian trên các 
hệ số và độ lợi kênh truyền. Thật vậy, tác giả ký hiệu h và h là các hệ 
 SDmn SEmt
số kênh truyền giữa ăng-ten phát thứ m của S với ăng-ten thu thứ n của D và 
ăng-ten phát thứ của S với ăng-ten thu thứ t của E trong một khe thời gian 
truyền dữ liệu bất kỳ, tương ứng, trong đó mN 1,2,...,S , nN 1,2,...,D , 
 65 
 tN 1,2,..., . Đối với các kênh giao thoa, tác giả sẽ ký hiệu h và h lần 
 E IDvn IEvt
lượt là hệ số kênh truyền giữa nguồn giao thoa thứ v đến ăng-ten thu thứ n 
và t của D và E, với vM 1,2,..., . Giả sử rằng tất cả các kênh là độc lập và 
đồng nhất, pha đinh khối và phẳng, được giữ không đổi trong một khe thời 
gian nhưng thay đổi độc lập tại các khe thời gian khác nhau. Do đó, các độ lợi 
 2 2 2 2
kênh truyền  h ,  h ,  h và  h là 
 SDSDm n m n SESEm t m t IDIDv n v n IEIEv t v t
các biến ngẫu nhiên phân bố hàm mũ (Exponential Random Variables: RVs), 
các hàm CDF của chúng được biểu diễn là [99]: 
 F x 1 exp SD x , F S E x 1 exp SE x , 
 SDmn mt
 F x 1 exp ID x , F x 1 exp IE x , (2.35) 
 IDIEv n v t
với  1,    1,    1   và  1,   
 SD Smn D  SE Smt E  ID Ivn D  IE Ivt E 
trong đó là toán tử kỳ vọng. 
 2.3.1.2. Lựa chọn ăng-ten phát tại S và phân tập thu SC tại D 
 Giả sử, S sử dụng ăng-ten phát thứ m để gửi gói mã hóa đến D, SINR 
nhận được tại ăng-ten thu thứ n của D sẽ được đưa ra như sau: 
 P
  SSDmn , (2.36) 
 SDmn M
 P 2
  IIDvn
 v 1
với PS là công suất phát của các ăng-ten tại S, PI là công suất phát của các 
nguồn giao thoa (giả sử là. như nhau tại các nguồn) và  2 là phương sai của 
tạp âm Gauss trắng cộng tại D (giả sử tất cả nhiễu cộng đều có phân bố Gauss 
có trung bình bằng 0 và phương sai bằng  2 ). 
 M
 Từ (2.36), với QPQP 22, và X sum  , ta có: 
 SSII n  IDvn
 v 1
 Q 
 SSDmn
  , (2.37) 
 SDmn sum
 QXI n 1
 66 
 Tương tự, SINR nhận được tại ăng-ten thu thứ t của E sẽ là: 
 PQ
  SSESSEm t m t , (2.38) 
 SEmt M sum
 2 QY 1
 P I t
  IIEvt
 v 1
 M
với Y sum  . 
 t  IEvt
 v 1
 Tiếp đến, xem xét hai mô hình TAS/SC như sau: 
  Mô hình TAS/SC số 1 (MH1) 
 Trong mô hình này, giả sử rằng D và E không biết được CSI giữa các 
ăng-ten của chúng và các nguồn giao thoa. Đây là mô hình TAS/SC truyền 
thống [100], khi chỉ dựa vào CSI trên các kênh chính. Kỹ thuật TAS/SC này 
được miêu tả bằng công thức (2.39) bên dưới: 
 ab**, :  max max , (2.39) 
 SDSD** mn 
 ab m 1,2,..., NSD n 1,2,..., N
trong đó, và b* lần lượt là ăng-ten được chọn để phát và giải mã dữ liệu tại 
 * *
S và D, với aN 1,2,..., S và bN 1,2,...,D . Do đó, SINR nhận được tại 
D trong một khe thời gian được tính bởi 
 QSSD
  TAS/SC/MH1 ab**. (2.40) 
 D QXsum 1
 I b*
 Tương tự như D, E cũng sử dụng SC để giải mã gói dữ liệu. Để công 
bằng với D, giả sử rằng E cũng không biết được CSI đến các nguồn giao thoa, 
mà chỉ biết CSI đến các ăng-ten phát của S. Thông thường, CSI của kênh 
truyền giữa S và D sẽ được ước lượng tại máy thu D thông qua tín hiệu hoa 
tiêu (pilot) hoặc symbol huấn luyện được g

File đính kèm:

  • pdfluan_an_nghien_cuu_hieu_nang_bao_mat_lop_vat_ly_cua_mot_so_h.pdf
  • pdf2. TOM TAT LATS_DANG HUNG_BAN FINAL.pdf
  • pdf3. Thong tin dong gop moi LA-TIENG VIET_DANG HUNG.pdf
  • pdf4. Thong tin dong gop moi LA-TIENG ANH_DANG HUNG.pdf
  • pdf5. Trich yeu Luan an_Tieng Viet_DANG HUNG.1.pdf
  • pdf6. Trich yeu Luan an_Tieng Anh_DANG HUNG.pdf