Luận án Nghiên cứu mô hình hồi quy Gamma bậc 1 [Gar(1)] Ứng dụng trong lãnh vực thủy văn
Trang 1
Trang 2
Trang 3
Trang 4
Trang 5
Trang 6
Trang 7
Trang 8
Trang 9
Trang 10
Tải về để xem bản đầy đủ
Bạn đang xem 10 trang mẫu của tài liệu "Luận án Nghiên cứu mô hình hồi quy Gamma bậc 1 [Gar(1)] Ứng dụng trong lãnh vực thủy văn", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
Tóm tắt nội dung tài liệu: Luận án Nghiên cứu mô hình hồi quy Gamma bậc 1 [Gar(1)] Ứng dụng trong lãnh vực thủy văn
hình biểu thị mô phỏng lưu lượng dòng chảy hàng tháng với quá trình ngẫu nhiên GAR(1) và chưa có nghiên cứu xác định dung lượng trung bình của hồ chứa với dòng chảy vào hồ chứa là quá trình ngẫu nhiên GAR(1). Từ những hạn chế nêu trên, định hướng nghiên cứu là nghiên cứu đánh giá và chọn lựa các thuật toán sinh biến ngẫu nhiên thích hợp để sinh biến ngẫu nhiên GAR(1), nghiên cứu các đặc trưng số cơ bản của tổng các biến ngẫu nhiên GAR(1), nghiên cứu bài toán mô phỏng lưu lượng dòng chảy hàng tháng, hàng năm với quá trình ngẫu nhiên GAR(1) và nghiên cứu mô phỏng dung lượng trung bình của hồ chứa với dòng chảy vào hồ chứa là quá trình ngẫu nhiên GAR(1). 7 CHƢƠNG 2 CÁC THUẬT TOÁN SINH BIẾN NGẪU NHIÊN GAR(1) Nội dung chương này trình bày các thuật toán sinh các biến ngẫu nhiên GAR(1). Bằng phương pháp nghiên cứu lý thuyết và phương pháp mô phỏng, các vấn đề lý luận cơ bản và các thuật toán sinh biến ngẫu nhiên GAR(1) được nghiên cứu, cài đặt và thử nghiệm. 2.1. Nghiên cứu một số thuật toán dùng để sinh biến ngẫu nhiên GAR(1) Để áp dụng mô hình GAR(1) vào thực tế, cần phải sinh các biến ngẫu nhiên GAR(1) dựa vào mẫu thống kê. Để sinh các biến ngẫu nhiên GAR(1) cần kết hợp các thuật toán sinh các biến ngẫu nhiên có phân phối đều đơn vị, phân phối mũ, phân phối chuẩn, phân phối Poisson và phân phối gamma. 2.2. Đề xuất thuật toán sinh biến ngẫu nhiên gamma với giá trị bất kỳ của tham số hình dạng a Thuật toán do Minh (1988) đề xuất được sử dụng để sinh biến ngẫu nhiên có phân phối gamma với tham số hình dang a>1. Dựa vào kết quả của Marsaglia và Tsang (2000), thuật toán cải tiến từ thuật toán Minh được đề xuất bởi Hung, Trang và Chien (2014) gọi là thuật toán IMGAG để sinh biến ngẫu nhiên gamma với giá trị bất kỳ của tham số a của phân phối gamma như sau: (1) Nếu a>1 sử dụng thuật toán của Minh với tham số a để sinh X, chuyển đến bước (3); (2) Nếu 1≥a>0 sử dụng thuật toán của Minh với tham số a+1 để sinh tính X = với U∼U(0,1) (U có phân phối đều trong khoảng (0,1)); (3) Nhận được X; (4) Kết thúc. 2.3. Đề xuất bổ sung tiêu chí đánh giá hiệu quả của thuật toán sinh biến ngẫu nhiên Trong thực tế, việc đánh giá tính hiệu quả các thuật toán sinh biến ngẫu nhiên chủ yếu dựa vào các tiêu chí là độ phức tạp và tính dễ cài đặt của thuật toán. Ngoài các tiêu chí nêu trên; Hung, Trang và 8 Chien (2014) đề xuất bổ sung tiêu chí để đánh giá tính hiệu quả của các thuật toán khác nhau dùng để sinh biến ngẫu nhiên có kiểu phân phối xác suất xác định là sử dụng thuật toán sinh chuỗi số ngẫu nhiên độc lập và kiểm tra sự bảo toàn các đặc trưng số gồm giá trị kỳ vọng, phương sai và hệ số lệch của chuỗi số phát sinh. 2.4. Mô phỏng thực nghiệm 2.4.1. Phương pháp mô phỏng Sử dụng các thuật toán sinh biến ngẫu nhiên gamma: Thuật toán Ahrens (1974) sử dụng cho trường hợp tham số a 1, thuật toán Tadikamalla (1978) sử dụng cho trường hợp tham số a>1, thuật toán IMGAG và thuật toán Marsaglia (2000) sử dụng cho mọi giá trị của tham số a. Các thuật toán được cài đặt bằng ngôn ngữ C và sử dụng mỗi thuật toán để sinh 10.000 số ngẫu nhiên có phân phối gamma với các tham số a khác nhau (từ 0.1 đến 500). Dựa vào mẫu các số ngẫu nhiên được sinh, các đặc trưng số thống kê gồm giá trị trung bình, phương sai và hệ số lệch được tính theo các công thức (1.10) - (1.12). Hệ số tương quan tính theo công thức (1.13). 2.4.2. Kết quả mô phỏng Từ mô phỏng thử nghiệm, kết qủa được trình bày trong các bảng 2.1 - 2.3 và các hình vẽ 2.1 - 2.3 như sau: Bảng 2.1. Giá trị trung bình của 10.000 số ngẫu nhiên gamma được sinh theo thuật toán IMGAG, thuật toán Marsaglia và thuật toán Ahrens IMGAG Marsaglia Ahrens a TB sinh % sai số TB sinh % sai số TB sinh % sai số 0.1 0.099 0.78 0.114 14.32 0.098 2.13 0.2 0.195 2.39 0.230 15.02 0.199 0.55 0.3 0.296 1.27 0.343 14.38 0.297 1.09 0.4 0.390 2.57 0.450 12.67 0.394 1.54 0.5 0.498 0.41 0.564 12.79 0.502 0.34 0.6 0.603 0.58 0.665 10.90 0.592 1.26 0.7 0.693 1.04 0.778 11.14 0.700 0.00 0.8 0.798 0.30 0.867 8.43 0.794 0.78 0.9 0.914 1.55 0.980 8.94 0.886 1.54 1.0 0.984 1.60 1.350 35.03 0.995 0.53 9 1.6 PT (1.2) 1.1 IMGAG Marsaglia 0.6 Ahrens 0.1 a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Hình 2.1: Giá trị trung bình với các tham số hình dạng a ≤1 Bảng 2.2. Phương sai của 10.000 số ngẫu nhiên gamma được sinh theo thuật toán IMGAG, thuật toán Marsaglia và thuật toán Ahrens IMGAG Marsaglia Ahrens a PS sinh % sai số PS sinh % sai số PS sinh % sai số 0.1 0.098 1.79 0.094 6.44 0.102 2.13 0.2 0.192 4.18 0.183 8.54 0.196 2.25 0.3 0.273 8.03 0.270 10.08 0.290 3.34 0.4 0.373 6.78 0.346 14.89 0.396 1.01 0.5 0.483 3.42 0.416 16.71 0.502 0.36 0.6 0.604 0.70 0.506 15.59 0.578 3.67 0.7 0.668 4.53 0.562 19.74 0.696 0.52 0.8 0.795 0.64 0.609 23.92 0.763 4.60 0.9 0.937 4.12 0.684 23.99 0.872 3.09 1.0 0.961 3.86 1.351 35.06 0.991 0.86 1.5 1.3 PT (1.3) 1.1 IMGAG 0.9 Marsaglia 0.7 0.5 Ahrens 0.3 0.1 a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Hình 2.2: Phương sai với các tham số hình dạng a ≤1 10 Bảng 2.3. Hệ số lệch của 10.000 số ngẫu nhiên gamma được sinh theo thuật toán IMGAG, thuật toán Marsaglia và thuật toán Ahrens IMGAG Marsaglia Ahrens Hệ số a lệch lý HSL % Sai HSL % Sai HSL % Sai thuyết sinh số sinh số sinh số 0.1 6.235 6.752 6.75 4.524 28.47 6.614 4.57 0.2 4.472 4.633 3.36 2.938 34.30 4.363 2.44 0.3 3.651 3.530 3.34 2.429 33.47 3.521 3.58 0.4 3.162 3.187 0.78 2.235 29.31 3.276 3.59 0.5 2.828 2.898 2.45 1.912 32.40 2.840 0.42 0.6 2.582 2.480 3.94 1.872 27.51 2.486 3.73 0.7 2.390 2.422 1.30 1.653 30.87 2.323 2.82 0.8 2.236 2.283 2.10 1.525 31.78 2.074 7.24 0.9 2.108 2.048 2.86 1.393 33.93 2.011 4.59 1.0 2.000 2.046 2.28 1.698 15.08 1.917 4.13 8.1 PT (1.4) 6.1 IMGAG Marsaglia 4.1 Ahrens 2.1 0.1 a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Hình 2.3: Hệ số lệch với các tham số hình dạng a ≤1 Đối với trường hợp tham số a>1, sử dụng các thuật toán IMGAG, thuật toán Marsaglia, thuật toán Tadikamalla và thu được các bảng và hình vẽ tương ứng. KẾT LUẬN CHƢƠNG 2 Qua nghiên cứu ở chương 2, Tác giả đạt đươc các kết quả sau đây: Nghiên cứu các thuật toán sinh biến ngẫu nhiên GAR(1) bao gồm các thuật toán sinh biến ngẫu nhiên có phân phối đều, phân phối chuẩn, phân phối mũ, phân phối Poisson và phân phối gamma. Tác 11 giả nghiên cứu đề xuất thuật toán IMGAG để sinh biến ngẫu nhiên gamma với mọi giá trị của tham số hình dạng a>0 và đề xuất bổ sung tiêu chí để đánh giá tính hiệu quả của thuật toán sinh biến ngẫu nhiên là dựa vào kỹ thuật mô phỏng và sử dụng thuật toán để sinh một chuỗi số ngẫu nhiên, dựa vào chuỗi số ngẫu nhiên được sinh, kiểm tra tính độc lập và sự bảo toàn các đặc trưng số gồm kỳ vọng, phương sai và hệ số lệch của phân phối xác suất xác định. Các kết quả chi tiết sẽ được trình bày ở phần kết luận của Luận án. CHƢƠNG 3 MÔ PHỎNG LƢU LƢỢNG DÒNG CHẢY VỚI QUÁ TRÌNH NGẪU NHIÊN GAR(1) Nội dung chương này trình bày nghiên cứu về các mô hình và các thuật toán dùng để mô phỏng lưu lượng dòng chảy. Tác giả sử dụng mô hình GAR(1), nghiên cứu mô hình Thomas-Fiering, phương pháp Fragments và đề xuất mô hình GAR(1)-Monthly và mô hình GAR(1)-Fragments dùng để mô phỏng lưu lượng dòng chảy hàng tháng. Bằng phương pháp mô phỏng, các mô hình và các thuật toán được thử nghiệm và đánh giá sự bảo toàn các đặc trưng số thống kê gồm giá trị trung bình, độ lệch chuẩn và hệ số lệch của chuỗi lưu lượng dòng chảy lịch sử. 3.1. Bài toán mô phỏng lƣu lƣợng dòng chảy Trên cơ sở chuỗi lưu lượng lịch sử quan trắc được tại các trạm đo thuỷ văn, bài toán mô phỏng lưu lượng dòng chảy trở thành việc đánh giá tính bảo toàn các đặc trưng số của các chuỗi lịch sử quan trắc gồm giá trị trung bình, độ lệch chuẩn, hệ số lệch và hệ số tương quan khi sử dụng mô hình để sinh các chuỗi lưu lượng dòng chảy (theo hàng tháng, hàng năm tại các trạm đo thuỷ văn) có độ dài n đủ lớn. 3.2. Mô hình Thomas-Fiering Trên cơ sở mẫu thống kê lưu lượng dòng chảy hàng tháng qua N năm (N gọi là kích thước của mẫu thống kê) tại một trạm đo, Mô 12 hình Thomas-Fiering dùng để diễn tả chuỗi lưu lượng dòng chảy này theo hàng tháng như sau: ( ) ( ) (3.1) trong đó: là lưu lượng dòng chảy tháng j của năm i; là hệ số hồi quy để ước lượng lưu lượng dòng chảy tháng j từ tháng j-1; và là trung bình và độ lệch chuẩn của chuỗi lịch sử của tháng j; là hệ số tương quan giữa chuỗi lưu lượng dòng chảy lịch sử tháng j và tháng j-1 và là một biến ngẫu nhiên có trung bình là 0 và phương sai đơn vị. 3.3. Phƣơng pháp Fragments Trên cơ sở chuỗi lưu lượng lịch sử hàng tháng của N năm, Svanidze (1964) đề xuất phương pháp mô phỏng lưu lượng dòng chảy hàng tháng bằng cách sinh chuỗi lưu lượng hàng năm theo mô hình lưu lượng hàng năm và kết hợp với mảnh lưu lượng lịch sử hàng tháng theo từng năm một cách ngẫu nhiên để tính lưu lượng hàng tháng. Phương pháp này không bảo toàn tốt hệ số tương quan của chuỗi lưu lượng lịch sử giữa tháng 1 của năm hiện tại và tháng 12 của năm trước. Srikanthan và McMahon (1980) đề xuất phương pháp Fragments cải tiến để khắc phục hạn chế này bằng cách sắp xếp chuỗi lưu lượng lịch sử hàng tháng thành N lớp tăng dần theo lưu lượng hàng năm và lưu lượng sinh hàng năm sẽ được kết hợp với lớp lưu lượng hàng tháng phù hợp (đã được sắp xếp) để tính lưu lượng hàng tháng 3.4. Đề xuất các mô hình mô phỏng lƣu lƣợng dòng chảy hàng tháng với quá trình ngẫu nhiên GAR(1) 3.4.1. Mô hình GAR(1)-Monthly Mô hình GAR(1) được sử dụng trong mô phỏng lưu lượng dòng chảy hàng năm: Theo kết quả của Hưng và Trang (2014) và Hung, Phien và Chien (2014), với chuỗi dữ liệu hàng tháng của N năm, dữ liệu của mỗi tháng qua N năm tạo thành một chuỗi dữ liệu và có thể áp dụng mô 13 hình GAR(1). Trường hợp này, mô hình GAR(1) áp dụng cho các chuỗi lưu lượng dòng chảy hàng tháng gọi là mô hình GAR(1)- Monthly được biểu diễn như sau: j=1..12 (3.2) trong đó: Xi,j là biến ngẫu nhiên biểu diễn quá trình phụ thuộc ở tháng j năm i; Фj là hệ số hồi quy của tháng j qua N năm; ei là biến ngẫu nhiên độc lập cần được xác định. Mỗi chuỗi biến ngẫu nhiên gamma phụ thuộc biểu diễn cùng một tháng qua N năm có cấu trúc phân phối và hệ số hồi quy riêng, vì vậy hệ thống các phương trình (3.2) là mô hình thích hợp được áp dụng để mô phỏng dữ liệu hàng tháng. Hung, Phien và Chien (2014) đề xuất: trong thực tế, hệ số tương quan giữa cùng một tháng j qua các năm liên tiếp có thể có giá trị âm và điều này có thể dẫn đến hệ số hồi quy có giá trị âm và mô hình GAR(1)-Monthly không thể áp dụng được. Để áp dụng được mô hình GAR(1)-Monthly cần phải khử giá trị âm của hệ số tương quan bằng cách tính: nếu . Thiết kế thuật toán mô phỏng (1) Khởi tạo và cập nhật mảng lưu lượng lịch sử hàng tháng A[N][12], N (số năm của chuỗi lịch sử), n (số năm của mẫu sinh); (2) Khởi tạo mảng lưu lượng sinh hàng tháng [n][12]; (3) Sử dụng các các công thức (1.6 ) - (1.13) và điều chỉnh độ lệch để tính 12 bộ tham số a, b, c và của mô hình GAR(1)-Monthly (mỗi bộ tham số tương ứng với 1 chuỗi lịch sử theo từng tháng qua các năm); (4) Với j = 1 đến 12: nếu tính ; với i = 1 đến n: tính (Sử dụng mô hình GAR(1) để sinh và tính ); (5) Kết thúc. 3.4.2. Mô hình GAR(1)-Fragments Hung và Chien (2013), Hung, Phien và Chien (2014) nghiên cứu áp dụng mô hình GAR(1) với lưu lượng dòng chảy hàng tháng bằng cách kết hợp mô hình GAR(1) với phương pháp Fragments và đề xuất mô hình gọi là mô hình GAR(1)-Fragments dùng để mô phỏng 14 chuỗi lưu lượng dòng chảy hàng tháng. Trên cơ sở chuỗi lưu lượng lịch sử hàng tháng của N năm, mô hình GAR(1)-Fragments sinh các giá trị lưu lượng hàng tháng theo thuật toán sau: Thiết kế thuật toán mô phỏng (1) Khởi tạo và cập nhật mảng lưu lượng lịch sử hàng tháng A[N][12], N (số năm của chuỗi lịch sử), n (kích thước mẫu sinh - số năm). (2) Khởi tạo mảng lưu lượng sinh hàng tháng [n][12]; (3) Phân chia chuỗi lịch sử thành N lớp, mỗi lớp là 1 năm lịch sử; (4) Sắp xếp N lớp tăng dần theo lưu lượng lịch sử hàng năm (Ai=∑ , sau khi sắp xếp A1 ứng với lớp có lưu lượng hàng năm bé nhất, AN ứng với lớp có lưu lượng hàng năm lớn nhất); (5) Tính cận trên U của lớp i: U = , i = 1,2,..N-1. U có giá trị i i N lớn tuỳ ý; (6) Tính các tham số hình dạng, tỉ lê, vị trí và hệ số hồi quy của mô hình GAR(1) dựa vào mẫu lưu lượng lịch sử hàng năm; (7) Sinh số ngẫu nhiên X1 có phân phối gamma 3 tham số: hình dạng, tỉ lệ và vị trí (tính ở bước 6); (8) Chọn lớp có có cận trên bé nhất lớn hơn hoặc bằng X1 (lớp i); (9) Tính = Mi,j . X1: là lưu lượng sinh của tháng j năm 1, , là fragment của lưu lượng lịch sử tháng j năm i. (10) Tính , (k = 2,..,n, n là số năm cần sinh): sử dụng mô hình GAR(1) để sinh ek và tính Xk , (k = 2,..,n), chọn lớp có cận trên bé nhất lớn hơn hoặc bằng Xk (gọi là lớp i) và: = Mi,j . Xk; (11) Kết thúc. 3.5. Mô phỏng thực nghiệm 3.5.1. Số liệu và phương pháp mô phỏng Từ kết quả nghiên cứu ở chương 2, sử dụng các thuật toán thích hợp để sinh các biến ngẫu nhiên trong mô hình Thomas-Fiering, mô 15 hình GAR(1)-Monthly và mô hình GAR(1)-Fragments. Lưu lượng lịch sử hàng tháng (m3/giây) của các trạm đo Thạnh Mỹ trên sông Vu Gia, trạm đo Nông Sơn trên sông Thu Bồn thuộc tỉnh Quảng Nam từ năm 1980 đến năm 2010 và trạm đo Yên Bái trên sông Thao từ năm 1958 đến năm 2011 được sử dụng. Các thuật toán được cài đặt bằng ngôn ngữ C. Để có được các ước tính chính xác cao, các chuỗi số liệu sinh sẽ được thực hiện với n =1000 năm. 3.5.2. Kết quả mô phỏng Kết quả của việc thí nghiệm được trình bày tóm lược trong các bảng 3.1 - 3.4 và các hình 3.1 - 3.3: Bảng 3.1. Giá trị trung bình tại trạm đo Nông Sơn Tháng Lịch sử GAR(1)-M GAR(1)-F Th.Fiering 1 248.96 245.40 220.25 267.63 2 138.21 137.85 136.53 147.64 3 94.05 93.01 94.06 101.39 4 76.45 76.84 66.42 87.16 5 107.30 106.38 97.66 121.01 6 94.54 94.15 93.68 101.73 7 70.33 71.44 74.95 74.84 8 85.02 85.60 91.32 93.60 9 195.59 195.30 174.61 94.19 10 697.19 705.26 778.81 754.37 11 1041.81 1039.30 1074.54 1116.12 12 619.97 622.19 559.19 659.08 m3/s 1200 Dữ liệu lịch sử 1000 GAR(1)-M 800 GAR(1)-F THOMAS-FIERING 600 400 200 0 Tháng 1 2 3 4 5 6 7 8 9 10 11 12 Hình 3.1: Giá trị trung bình tại trạm đo Nông Sơn 16 Bảng 3.2. Độ lệch chuẩn tại trạm đo Nông Sơn Tháng Lịch sử GAR(1)-M GAR(1)-F Th.Fiering 1 110.97 104.54 87.42 79.22 2 46.07 45.50 37.07 34.23 3 33.30 32.67 30.37 24.61 4 39.32 40.82 34.25 29.29 5 60.89 63.72 53.22 45.05 6 39.63 38.2 32.01 29.01 7 25.65 26.07 29.32 19.35 8 48.82 49.52 71.14 36.02 9 174.70 178.68 88.39 18.56 10 354.16 376.42 438.79 244.56 11 549.65 544.42 534.59 401.98 12 329.72 334.52 311.34 235.41 3 600m /s Dữ liệu lịch sử 400 GAR(1)-M GAR(1)-F THOMAS-FIERING 200 0 Tháng 1 2 3 4 5 6 7 8 9 10 11 12 Hình 3.2: Độ lệch chuẩn tại trạm đo Nông Sơn Bảng 3.3. Hệ số lệch tại trạm đo Nông Sơn Tháng Lịch sử GAR(1)-M GAR(1)-F Th.Fiering 1 1.54 1.53 1.51 0.67 2 1.09 1.23 0.95 0.57 3 0.87 1.20 0.73 0.43 4 1.70 1.98 2.18 0.48 5 0.79 1.00 0.78 0.35 6 0.77 0.80 0.93 0.34 7 0.47 0.64 1.32 0.22 8 1.55 1.76 3.44 0.62 17 9 3.08 5.17 2.32 1.73 10 0.23 -0.01 -0.12 0.22 11 0.68 0.66 1.66 0.42 12 0.84 1.12 0.96 0.55 6 Dữ liệu lịch sử 4 GAR(1)-M GAR(1)-F 2 THOMAS-FIERING 0 Tháng 1 2 3 4 5 6 7 8 9 10 11 12 -2 Hình 3.3 Hệ số lệch tại trạm đo Nông Sơn Bảng 3.4. Các đặc trưng số thống kê hàng năm tại trạm đo Nông Sơn Đặc trưng số Lịch sử GAR(1)-M GAR(1)-F Th.Fiering Giá trị trung bình 3469.72 3454.17 3467.92 3588.66 Độ lệch chuẩn 1030.77 729.03 1025.29 664.64 Hệ số lệch 0.76 0.32 0.78 0.08 Tương tự tại các trạm đo Thạnh Mỹ và Yên Bái, Tác giả cũng thu được các bảng và các hình vẽ tương ứng. KẾT LUẬN CHƢƠNG 3 Trong chương 3, Tác giả đã thực hiện nghiên cứu và đạt được kết quả như sau: nghiên cứu và đề xuất các mô hình biểu thị mô phỏng lưu lượng dòng chảy hàng tháng là mô hình GAR(1)-Monthly và mô hình GAR(1)-Fragments. Bằng mô phỏng thực nghiệm, kết quả thu được là mô hình GAR(1)-Monthly bảo toàn các đặc trưng số thống kê gồm giá trị trung bình, độ lệch chuẩn và hệ số lệch tốt hơn các mô hình GAR(1)-Fragments và mô hình Thomas-Fiering và trên cơ sở dữ liệu hàng tháng để tính dữ liệu hàng năm thì mô hình GAR(1)- Fragments bảo toàn các đặc trưng số thống kê gồm giá trị trung bình, độ lệch chuẩn và hệ số lệch tốt hơn so với mô hình GAR(1)-Monthly và mô hình Thomas-Fiering. 18 CHƢƠNG 4 DUNG LƯỢNG TRUNG BÌNH CỦA HỒ CHỨA VỚI DÒNG VÀO LÀ QUÁ TRÌNH NGẪU NHIÊN GAR(1) Nội dung chương này trình bày nghiên cứu về bài toán tính dung lượng trung bình của hồ chứa. Bằng phương pháp lý thuyết, các biểu thức giải tích về kỳ vọng và phương sai của tổng các biến ngẫu nhiên GAR(1) được đề xuất. Kết hợp công thức của Phien (1978) với biểu thức giải tích về phương sai của tổng các biến ngẫu nhiên có phân phối GAR(1) đã đạt được, Tác giả đề xuất biểu thức xấp xỉ dùng để tính dung lượng trung bình của hồ chứa với dòng vào là các biến ngẫu nhiên GAR(1). Bằng kỹ thuật mô phỏng, sử dụng mô hình GAR(1) phát sinh lưu lượng hàng năm chảy vào hồ chứa và thu được các giá trị về dung lượng trung bình của hồ chứa với các tham số khác nhau và được so sánh với các giá trị theo biểu thức xỉ. 4.1. Dung lƣợng của hồ chứa 4.1.1. Phương trình tính dung lượng hồ chứa tổng quát Xem { } là một chuỗi các biến ngẫu nhiên với ( ) = 0 khi đó tổng tích luỹ hay tổng riêng gọi là , cực đại của tổng riêng hay lượng dư thừa , cực tiểu của tổng riêng hay lượng thiếu hụt , và biên độ dao động của tổng riêng của dãy gồm n biến ngẫu nhiên được định nghĩa như sau: (4.1) ( ) (4.2) ( ) (4.3) (4.4) dễ thấy rằng và ( ) = 0. 4.1.2. Dung lượng trung bình của hồ chứa với dòng chảy vào là các biến ngẫu nhiên độc lập Dung lượng trung bình của hồ chứa được nghiên cứu với giả thiết rằng các dòng chảy vào hồ chứa ( ) là chuỗi các biến ngẫu nhiên độc lập. Để loại bỏ sự phụ thuộc của dung lượng trung bình của hồ chứa vào các kiểu phân phối khác nhau, một biến ngẫu nhiên mới được sử dụng bằng cách chuẩn hoá : 19 ở đây là độ lệch chuẩn của . Biến ngẫu nhiên đã được chuẩn hoá có trung bình bằng 0 và phương sai đơn vị. Với việc sử dụng biến ngẫu nhiên mới , nếu ( ) và ( ) là các giá trị kỳ vọng của biên độ dao động của dung lượng tương ứng với z và , do đó ta có: ( ) ( ) Bằng phương pháp sử dụng hàm đa biến, với giả thiết dòng chảy vào hồ chứa là chuỗi các biến ngẫu nhiên có phân phối chuẩn, Salas-La Cruz (1972) cho kết quả dung lượng trung bình của hồ chứa như sau: ( ) ( ) √ ∑ Với trường hợp chuỗi các biến ngẫu nhiên có phân phối gamma độc lập, theo Phien (1978) thì hệ số lệch của phân phối gamma cần được tính đến và cho kết quả là biểu thức xấp xỉ tính dung lượng trung bình của hồ chứa là: ( ) ( ) ( ) √ ∑ (4.5) 4.2. Phân tích lý thuyết 4.2.1. Đặc trưng số cơ bản của tổng các biến ngẫu nhiên GAR(1) Các biến ngẫu nhiên theo mô hình GAR(1) được biểu diễn bởi phương trình: Khi đó tổng của n biến ngẫu nhiên GAR(1) là một biến ngẫu nhiên gọi là được tính theo phương trình : ∑ trong đó: , i = 1, 2, , n là các biến GAR(1). Bằng phân tích lý thuyết, Hung va Chien (2013) đạt được các biểu thức giải tích về các đặc trưng số cơ bản: kỳ vọng và phương sai 20 của tổng các biến ngẫu nhiên GAR(1) với phân phối gamma 1 tham số như sau: Kỳ vọng của tổng của n biến ngẫu nhiên GAR(
File đính kèm:
- luan_an_nghien_cuu_mo_hinh_hoi_quy_gamma_bac_1_gar1_ung_dung.pdf