Tóm tắt Luận án Nghiên cứu giải pháp nâng cao độ chính xác của mô hình số bề mặt được thành lập từ ảnh radar
Trang 1
Trang 2
Trang 3
Trang 4
Trang 5
Trang 6
Trang 7
Trang 8
Trang 9
Trang 10
Tải về để xem bản đầy đủ
Bạn đang xem 10 trang mẫu của tài liệu "Tóm tắt Luận án Nghiên cứu giải pháp nâng cao độ chính xác của mô hình số bề mặt được thành lập từ ảnh radar", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
Tóm tắt nội dung tài liệu: Tóm tắt Luận án Nghiên cứu giải pháp nâng cao độ chính xác của mô hình số bề mặt được thành lập từ ảnh radar
ó thể kể đến nghiên cứu của Hồ Tống Minh Định (2006), Trần Thanh Hà (2017), các tác giả đã ứng dụng kỹ thuật InSAR để xây dựng DEM. Kết quả ban đầu đạt được cho thấy độ chính xác của DEM tạo từ ảnh SAR có thể đạt từ ±2m-±7m ở khu vực đồng bằng và ±10m-±20m ở khu vực đồi núi. Tuy nhiên, sự thành công của kỹ thuật phụ thuộc vào nhiều yếu tố khác như bộ cảm SAR thu nhận, đường đáy, sự tuơng quan, lời giải bài toán 6 mở pha Đặc biệt, bài toán mở pha cần được giải một cách chính xác để nâng cao độ chính xác thành lập DEM. Trần Vân Anh (2014), cũng chỉ ra rằng độ chính xác của DEM chịu ảnh hưởng của yếu tố ngoại cảnh. Tác giả đã đánh giá sự ảnh hưởng của các yếu tố ngoại cảnh đến kết quả tạo giao thoa của cặp ảnh trong việc xây dựng mô hình số địa hình. Ngoài ra, để nâng cao độ chính xác chiết xuất các điểm đặc trưng phục vụ đồng đăng ký ảnh có thể ứng dụng phép biến đổi wavelet Trần Thanh Hà (2017). 1.4. Đánh giá kết quả nghiên cứu đạt đƣợc Các kết quả nghiên cứu được công bố trên các tạp chí khoa học trong và ngoài nước, đã khẳng định khả năng ứng dụng của ảnh radar trong tạo DSM. Các kết quả nghiên cứu cũng khẳng định rằng trong qui trình xây dựng DSM bằng phương pháp giao thoa, công đoạn đồng đăng ký ảnh là một trong những công đoạn quan trọng ảnh hưởng đến độ chính xác của sản phẩm cuối cùng DSM. Dữ liệu gốc được sử dụng trong các nghiên cứu khoa học đã công bố chủ yếu là tư liệu ERS - 1,2, Envisat ASAR, ALOS kênh L và TerrSAR - X. V n chưa có nhiều nghiên cứu thử nghiệm trên tư liệu Sentinel - 1A, đi c ng tư liệu này là phần mềm xử lý ảnh SNAP để xây dựng DSM. Trong phần mềm đã sử dụng, quá trình đồng đăng ký được hoàn toàn tự động từ bước áp dụng một kích thước của sổ cố định tới chọn điểm khớp trên ảnh, nên độ chính xác của DSM được thành lập chưa cao, sai số đạt từ 20m đến 30m (tùy thuộc vào độ phân giải của ảnh). 1.5. Những vấn đề đƣợc phát triển trong luận án Dựa trên các kết quả nghiên cứu đã đạt được, NCS tiếp tục nghiên cứu giải pháp xử lý ảnh SAR nhằm nâng cao chất lượng của DSM được thành lập từ ảnh radar bằng phương pháp InSAR ph hợp trong điều kiện của Việt Nam bao gồm: - Nghiên cứu thành lập DSM từ tư liệu ảnh radar và các yếu tố ảnh hưởng đến độ chính xác của DSM được thành lập bằng phương pháp InSAR. - Nghiên cứu ứng dụng phép biến đổi wavelet trong phân tích hiệu ảnh SAR để tự động chiết xuất các điểm đặc trưng, chọn kích thước cửa số khớp ảnh phục vụ quá trình đồng đăng ký ảnh. - Nghiên cứu ứng dụng phương pháp lọc nhiễu Goldstein tích hợp kỹ thuật thích nghi láng giềng có trọng số để nâng cao độ chính xác của DSM. - Thử nghiệm thành lập DSM dựa trên giải pháp đã trình bày, với tư liệu nghiên cứu thử nghiệm trong luận án là tư liệu kênh C (Sentinel- 1A). 7 CHƢƠNG 2. CƠ SỞ KHOA HỌC ỨNG DỤNG ẢNH RADAR TRONG THÀNH LẬP MÔ HÌNH SỐ BỀ MẶT (DSM) 2.1. Nguyên lý thu nhận ảnh radar 2.2. Hệ SLAR 2.2.1 Nguyên lý hoạt đ ng của SLAR 2.2.2 Đ phân giải không gian 2.3. Nguyên lý hoạt động của SAR 2.4. Các vệ tinh radar 2.5. Các tính chất đặc trƣng của ảnh radar 2.6. Các phƣơng pháp đo ảnh radar 2.6.1. Phương pháp radar đ dốc (Radarclinometry) 2.6.2. Phƣơng pháp radar lập thể (StereoSAR hay Radargrammetry) 2.6.3. Phương pháp đo radar phân ực (Polarimetric SAR) 2.6.4. Phương pháp đo giao thoa - InSAR 2.7. Khả năng ứng dụng của viễn thám radar Nếu như từ năm 2005 trở về trước chỉ có ba vệ tinh hoạt động trong dải sóng siêu cao tần, với độ phân giải trung bình, thì ngày nay đã có hàng chục vệ tinh viễn thám radar đang hoạt động, và độ phân giải của chúng có thể đạt tới 1m. Đặc biệt những năm gần đây hệ thống vệ tinh viễn thám Sentinel đã được phóng lên quĩ đạo, với chu kỳ lặp rất ngắn (6-11 ngày), độ phân giải rất cao, phạm vi quét rộng đã mở ra khả năng ứng dụng to lớn của loại tư liệu này trong nhiều lĩnh vực trên một diện rộng. Viễn thám radar được sử dụng trong các lĩnh vực như: 2.7.1 Thành lập bản đồ địa hình 2.7.2. Xá định lún và dịch chuyển trên bề mặt Trái Đất 2.7.3. Lập bản đồ huyên đề 2.8. Nguyên lý xây dựng DSM theo phƣơng pháp radar giao thoa - InSAR Hệ thống SAR có thể tạo ra được sản phẩm được gọi là ảnh “single look complex” mà nó lưu giữ những thông tin về pha và thông tin cường độ của tín hiệu tán xạ ngược. Những thông tin này có thể được khai thác sử dụng cho thành lập mô hình số địa hình hoặc tìm kiếm sự thay đổi hoặc biến dạng của địa hình. Thông tin pha có liên quan đến vị trí dọc theo sóng có liên quan đến điểm tham chiếu, hay liên quan đến sự dịch chuyển giữa hai hay nhiều sóng. 8 2.9. Quy trình thành lập DSM bằng phƣơng pháp radar giao thoa - InSAR. Hiện nay, để thành lập DSM từ tư liệu viễn thám radar theo phương pháp InSAR, người ta thường sử dụng qui trình công nghệ (hình 2.1). 2.9.1. Đồng đăng ký ảnh Đồng đăng ký ảnh là quá trình chuyển đổi hai ảnh SAR về chung một hệ quy chiếu. Có hai cách: một là đưa cả hai ảnh về chung hệ quy chiếu mặt đất; hoặc là quy đổi ảnh này về hệ quy chiếu của ảnh kia. Đối với phương pháp InSAR, thông thường người ta sử dụng cách thứ hai. Để có được mô hình số bề mặt (DSM) tốt nhất thì cần thiết phải nâng cao độ chính xác của quá trình đồng đăng ký ảnh. Đồng nghĩa với việc phải tìm được kích thước cửa sổ tối ưu và những điểm khớp phải là những điểm đặc trưng trên ảnh. 2.9.2. Tạo giao thoa Sau khi đồng đăng ký ảnh, giao thoa phức được tạo ra bằng phép nhân liên hợp mỗi pixel phức của ảnh thứ nhất với cùng pixel phức tương ứng của ảnh thứ hai. Cường độ của ảnh giao thoa đo mức độ tương quan ch o của các ảnh . 2.9.3. Loại bỏ pha phẳng Và pha được làm phẳng được tính theo theo công thức : defflat h H B 1tan 4 (2.1) Hình 2.1. Quy trình thành lập DSM bằng phương pháp giao thoa 9 2.9.4. Lọc nhiễu pha Trước khi thực hiện mở pha, chúng ta cần phải tăng cường chất lượng giao thoa làm cho dữ liệu trở nên tốt hơn. Trước hết chúng ta cần phải là giảm nhiễu trên ảnh giao thoa, nhiễu được thực hiện thông qua một phép lọc. Hiện nay, có rất nhiều phương pháp lọc nhiễu pha đã được nghiên cứu và áp dụng. Một trong các phương pháp lọc nhiễu được sử dụng phổ biến nhất thuộc nhóm này là phương pháp lọc nhiễu Goldstein . Goldstein là phương pháp lọc nhiễu pha thực hiện trên miền tần số, được xem như ph p lọc thông thấp (low-pass filter), làm trơn mượt giá trị cường độ của kết quả biến đổi Fourier các phân mảnh. Phương pháp lọc nhiễu Goldstein cục bộ được Baran đề xuất với tham số lọc được xác định dựa vào giá trị tương quan (coherence) tại mỗi vị trí được lọc nhiễu. Dựa vào mối quan hệ nghịch biến giữa giá trị tương quan và độ lệch chuẩn của pha, tham số lọc nhiễu được xác định tương ứng với giá trị tương quan trung bình. Phương pháp lọc nhiễu Goldstein và Goldselcục bộ đã đưa ra cách tính hệ số lọc dựa trên giá trị tương quan trung bình, thực tế v n chưa phải tối ưu do dữ liệu SAR thu được từ bề mặt phi tuyến và không cố định. Để khắc phục nhược điểm này, cần có giải pháp kỹ thuật lọc pha tối ưu nhất có khả năng giảm tối đa phần pha biến dạng (phase residues), thể hiện v ng pha bị lỗi, trong khi đó v n bảo toàn được các vân giao thoa (fringes). 2.9.5. Giải mở pha Giá trị pha đo được chỉ là phần dư của phép chia hết cho 2π, nghĩa là giá trị số nguyên lần 2 π bị mất. Vì vậy, nếu bề mặt biến dạng trên ảnh lớn hơn 1/2 bước sóng radar, và pha giao thoa tạo ra bị chệch hơn một chu kỳ, thì ảnh giao thoa cần phải có bước để phục hồi lại chu kỳ đã mất. Quá trình phục hồi lại chu kỳ đã mất này gọi là giải mở pha. Do đó, để giải bài toán mở pha, thường dựa vào DSM tham chiếu giả định rằng grandient pha giữa các pixel liền kề được giới hạn (-π, π). 2.9.6. Chuyển đổi pha thành giá trị độ cao 2.9.7. Chuyên đổi tọa độ và nắn chỉnh hình học - Hiệu chỉnh hình học (Geocoding) Chuyển đổi hình học đề cập đến việc chuyển đổi tọa độ từ tọa độ radar (khoảng cách/phương vị/chiều cao) sang hệ tọa độ tọa độ trắc địa 2.9.8 Đánh giá hất lượng của DSM Sai số trung phương được tính như sau : 10 n i ih n RMSE 1 21 (2.2) Trong đó: h là tổng khoảng chênh lệch độ cao; hs là độ cao của điểm trên DSM; hr là độ cao của điểm tham khảo; n là số điểm l y m u. Đơn vị của RMSE thường là mét. TIỂU KẾT CHƯƠNG 2 Chương 2 đã trình bày các kiến thức về các khái niệm cơ bản và nguyên lý tạo và đo ảnh radar, các hệ thống vệ tinh và tư liệu ảnh radar đang được sử dụng hiện nay trong thành lập bản đồ, trong xây dựng DSM. Phương pháp đo ảnh radar sử dụng chủ yếu hiện nay là phương pháp đo giao thoa - InSAR Trong qui trình xây dựng DSM tử ảnh radar theo phương pháp InSAR, các công đọan: đồng đăng kỹ ảnh và lọc nhiễu pha là những công đoạn quan trọng, ảnh hưởng trực tiếp đến chất lượng của ảnh giao thoa để tạo ra sản phẩm DSM. CHƢƠNG 3. GIẢI PHÁP NÂNG CAO ĐỘ CHÍNH XÁC CỦA DSM ĐƢỢC THÀNH LẬP BẰNG ẢNH RADAR 3.1. Giải pháp nâng cao độ chính xác của đồng đăng ký ảnh trong thành lập DSM Giải pháp bao gồm phân tích hệ số tự tương quan của ảnh bằng phép biến đổi sóng nhỏ (wavelet) 1 chiều, dựa trên hệ số wavelet để xác định kích thước cửa sổ tối ưu. Với giải pháp được đề xuất, qui trình đồng đăng ký ảnh được mô tả: Hình 3.1. Các bước trong quá trình đồng đăng ký ảnh SAR 11 3.1.1. Khái niệm chung về á phương pháp lý tín hiệu Phép biến đổi Fourier Công thức biến đổi Fourier thời gian ngắn STFT, được mô tả như sau [103]: dtetwtxftSTFT ft 2., (3.1). Với f là tần số và w(t −t ) là hàm cửa số, trong đó t đóng vai trò để dịch chuyển cửa sổ theo x. Phép biến đổi wavelet Năm 1982, Jean Morlet lần đầu tiên đưa ra ý tưởng về wavelet như là một hàm cấu trúc phức tạp bằng cách dịch và dãn một hàm đơn, được gọi là wavelet mẹ (Mother wavelet), để phân tích tín hiệu không dừng. Wavelet là dạng sóng có thời gian duy trì tới hạn với giá trị trung bình bằng không. Wavelet có thời gian giới hạn, bất thường và bất đối xứng. Phân tích wavelet chia các tín hiệu thành các tham số dịch chuyển và tham số tỷ lệ của các wavelet mẹ. 3.1.2. Phép biến đổi Wavelet liên tục (CWT – Continous Wavelet Transform) Phân tích dựa trên ph p biến đổi wavelet cho ph p xác định xu hướng tín hiệu (signal trends) từ đó xác định được phần nhiễu của tín hiệu. Trong khi phần nhiễu của tín hiệu luôn chứa các thành phần tần số cao thì xu hướng chung của tín hiệu luôn chứa các thành phần tần số thấp. Khi tầng phân tích tăng lên thì độ phân giải của tín hiệu giảm xuống, tạo điều kiện cho việc ước tính các xu hướng tín hiệu chưa xác định Tính tự tương quan Hàm tự tương quan một chiều của các điểm ảnh với khoảng cách d được xác định theo phương trình sau : V dCov dR )( (3.2) Cov(d) là giá trị hiệp phương sai của các điểm ảnh với khoảng cách d; và V là phương sai của các điểm ảnh được tính như sau : 1 )( 1 N MZ V N i i (3.3) Trong đó: Z là giá trị độ xám của điểm ảnh thứ i, Zi+d là giá trị độ xám của điểm ảnh có khoảng cách d với điểm ảnh thứ i. M là trị trung bình của tất cả các điểm ảnh. N là tổng số các điểm ảnh được tính toán. 12 Trong một ảnh, hệ số tự tương quan khác nhau cho khoảng cách d khác nhau. Hệ số tự tương quan thay đổi theo khoảng cách d, điều này được thể hiện ở hình 3.2. Hình 3.2. Sự biến thiên của hệ số tự tương quan với khoảng cách Từ hình 3.42 cho thấy, hệ số tự tương quan thay đổi khi khoảng cách tăng, và có sự thay đổi lớn tại một số vị trí. Đây là các vị trí có thể được sử dụng như là kích thước của cửa sổ khớp điểm ảnh. Giá trị tự tương quan bằng 0 có nghĩa là các điểm ảnh khác nhau hoàn toàn. Thực tế cho thấy hệ số tự tương quan có thể không giảm dần tiệm cận 0 mà thay vào đó là một giá trị nào đó. Xá định kích thước c a sổ tối ưu dựa trên phân tích tự tương quan (auto-correlation) Trên cơ sở phân tích lý thuyết về ứng dụng của wavelet trong phân tích ảnh SAR và dựa vào hệ số tự tương quan của ảnh được tính theo theo công thức (3.2) và kích thước cửa sổ được xác định dựa trên phân tích tự tương quan. 3.1.3. T m điểm đặ trưng ằng wavelet Việc tìm kiếm những điểm đặc trưng trên ảnh SAR là rất khó khăn. Do đó trong các phần mềm thương mại hiện nay chủ yếu lựa chọn các điểm khớp theo theo lưới ô vuông (grid) và khoảng cách giữa các điểm khớp tùy chọn. Nên sẽ có những điểm có giá trị tương quan cao nếu điểm đó chính là điểm đặc trưng của ảnh, nhưng cũng tồn tại những điểm không rơi vào điểm đặc trưng và có tương quan thấp, từ đó ảnh hưởng đến độ chính xác của quá trình đồng đăng ký ảnh SAR. Hiện nay, có một số phương pháp được sử dụng để chiết xuất các điểm đặc trưng từ ảnh SAR, tuy nhiên việc tính giá trị gradient cho mỗi điểm ảnh từ ảnh gốc tạo nên khối lượng tính toán vô cùng lớn. Trong phương pháp wavelet, để chiết xuất các điểm đặc trưng từ ảnh, dựa trên giá trị của các hệ số biến đổi wavelet. Ở đây giá trị được tính cho các ảnh ở các tầng phân tích wavlet, do đó giảm được khối lượng tính toán. Đặc biệt wavelet còn hỗ trợ cho phân tích đa phân giải ảnh. Phân tích wavelet cung cấp tất cả các đặc trưng của ảnh mà không làm mất đi thông tin quan trọng của dữ liệu ban đầu ngay cả ở độ phân giải thấp. 13 Phân tích ảnh SAR bằng wavelet Phân tích đa phân giải (Multi Resolution Analysis – MRA) sử dụng các bộ lọc thông thấp và bộ lọc thông cao liên tiếp để phân tích tín hiệu thành các phần ở các dải tần số khác nhau, có khả năng tạo ra hai thành phần chi tiết và xấp xỉ. Thành phần chi tiết có hệ số tỷ lệ thấp tương ứng với thành phần tần số cao được thực hiện thông qua bộ lọc thông cao, thành phần xấp xỉ có hệ số tỷ lệ cao tương ứng với thành phần tần số thấp được thực hiện thông qua bộ lọc thông thấp. Mỗi thành phần của ảnh được phân tích ở mỗi tầng phân tích nêu trên được xem như là một kênh ảnh. Như vậy, ở mỗi tầng phân tích, ảnh được phân tích thành 4 ảnh nhỏ hơn, chúng ta gọi là LL, LH, HL, HH. Hình 3.3 mô tả cấu trúc phân tích hình kim tự tháp của phương pháp wavelet. Ảnh SAR được phân tích bằng wavelet để chuẩn bị cho bước chiết tách điểm ảnh đặc trưng tiếp theo. Hình 3.3. Cấu trúc hình tháp của phương pháp phân tích ảnh bằng wavelet Chiết xuất điểm đặ trưng ằng wavelet Khi ảnh SAR đã được phân tích thành các mức khác nhau, thì bước tiếp theo là xác định các điểm đặc trưng trên hai ảnh ở mỗi tầng phân tích khác nhau. Trong phần nghiên cứu này tác giả sử dụng giá trị wavelet cực đại cực đại của hệ số wavelet để phát hiện các điểm sắc nét trên ảnh. Các hệ số wavelet LH và HL (thành phần tần số cao) được sử dụng để ước lượng giá trị wavelet cực đại. Ở mức phân tích cuối cùng, tham số λ2j là ngưỡng để phát hiện ra điểm đặc trưng. Những điểm nằm trong ngưỡng λ2j thì được chọn là điểm đặc trưng. Sau đó, giá trị ngưỡng được chọn để chiết xuất điểm đặc trưng, trong phần thực nghiệm giá trị ngưỡng được xác định là 2, được chiết xuất theo lưu đồ, thể hiện trong hình (3.12). 3.1.4. Chương tr nh tự đ ng đồng đăng ký ảnh Tự động phân tích ảnh là cơ sở để thực hiện các phân tích thiếp theo. Ảnh SAR được tự động phân tích bằng wavelet đa phân 14 giải trong wavelet db1 là phù hợp nhất vì db1 có thể phát hiện ra điểm đột biến của tín hiệu. Ảnh SAR được phân tích thành 4 tầng, mỗi tầng gồm 4 ảnh nhỏ đại diện cho các đặc tính của ảnh theo các hướng đứng, hướng ngang, đường chéo và ảnh xấp xỉ. Hình 3.4 là lưu đồ thuật toán tự động đồng đăng ký ảnh SAR. Hình 3.4. Lưu đồ thuật toán tự động đồng đăng ký ảnh 3.2 Giải pháp lọc nhiễu pha sử dụng phƣơng pháp lọc Goldstein tích hợp kỹ thuật thích nghi láng giềng có trọng số Pha giao thoa có thể bị ảnh hưởng bởi nhiều yếu tố, làm giảm chất lượng của việc tạo giao thoa phục vụ cho việc tạo mô hình số bề mặt. Nhiễu pha được định nghĩa là pha gián đoạn do nhiễu trong giao thoa. Số lượng nhiễu pha có tác động quan trọng đối với quá trình mở pha, và nó trở thành một tiêu chí trong đánh giá chất lượng giao thoa. 15 Hơn nữa, pha giao thoa ở các vùng khác nhau sẽ có các tính chất thống kê khác nhau do ảnh hưởng bởi các yếu tố địa hình. Hình 3.5. Lưu đồ thuật toán lọc nhiễu pha Với mỗi ảnh pha giao thoa được lọc nhiễu, mỗi điểm ảnh được lọc gọi là điểm ảnh x t. Các điểm ảnh xung quanh điểm ảnh x t được gọi là điểm ảnh láng giềng. Số lượng và kích thước của điểm ảnh láng giềng có thể t y biến. Các điểm ảnh này sau đó được phân ra thành hai nhóm dựa trên tính chất xác suất, bao gồm nhóm nền và nhóm lọc. Các bước lọc nhiễu được thực hiện như sau: - ớc tính sơ bộ giá trị của điểm ảnh x t g(m, n), đây là giá trị trung bình median của các điểm ảnh thuộc một cửa sổ kích thước 3x3 chứa điểm ảnh x t ở chính giữa. - Phân loại các điểm ảnh láng giềng theo hai nhóm: nhóm nền và nhóm lọc: 16 + Phân loại lần 1: 8 điểm ảnh láng giềng trực tiếp g(k, l) của điểm ảnh g(m, n) lần lượt được kiểm tra để phân loại. + Phân loại lần 2:Tính giá trị trung bình các điểm ảnh nhóm lọc nmg , và gán cho điểm ảnh x t. Phân loại lại các điểm ảnh thuộc nhóm nền. TIỂU KẾT CHƢƠNG 3 Phép biến đổi xấp xỉ sóng nhỏ - biến đổi wavelet là một trong những phép biến đổi đã và đang được sử dụng phổ biến trong xử lý tín hiệu. Với một số ưu điểm về cơ sở toán học, về tính bất biến về vị trí, tính bảo toàn thông tin, phép biến đổi wavelet có thể được sử dụng trong xử lý tín hiệu của ảnh radar và đặc biệt có hiệu quả trong phương pháp đo radar giao thoa. Trong phương pháp giao thoa, ph p biến đổi wavelet được sử dụng để phân tích các ảnh và hệ số tự tương quan trong nhằm mục đích tự động chọn kích thước cửa sổ khớp, khớp điểm tự động trong công đoạn đồng đăng ký cặp ảnh radar giao thoa. Lọc nhiễu được xem như là một giải pháp quan trọng để nâng cao độ chính xác của DSM thành lập bằng phương pháp InSAR. Để giảm thiểu ảnh hưởng của các pha lỗi, bảo tồn vân giao thoa với mục đích tăng độ chính xác và hiệu quả mở pha, NCS đã đề xuất phương pháp lọc nhiễu Goldstein tích hợp kỹ thuật thích nghi láng giềng có trọng số. CHƢƠNG 4. THỰC NGHIỆM VÀ THẢO LUẬN 4.1. Khu vực nghiên cứu. Khu vực thử nghiệm trong luận án là các vùng Quảng Ninh và Ninh Thuận có địa hình tương đối đặc trưng, và có đầy đủ các tư liệu, dữ liệu cần thiết. 4.2. Dữ liệu sử dụng 4.2.1. Ảnh SAR: NCS chọn dữ liệu Sentinel-1A. Sentinel-1A là vệ tinh đầu tiên thuộc dự án Copernicus, với mục đích theo dõi sự biến đổi khí hậu và giám sát môi trường ở trái đất. Hai cặp ảnh SAR được thu nhận cách nhau 12 ngày nên sự tương quan giữa hai ảnh thu được tại một khu vực nghiên cứu rất lớn. 17 Ảnh chính Ảnh phụ Hình 4.1. Ảnh Sentinel - 1A khu vực Quảng Ninh Ảnh chính Ảnh phụ Hình 4.2. Ảnh Sentinel - 1A khu vực Ninh Thuận Bảng 4.1. Dữ liệu ảnh cho khu vực nghiên cứu Khu thực nghiệm Dữ liệu Ngày thu Độ phân giải (m) Quỹ đạo Kích thƣớc ảnh Đƣờng đáy (m) Phƣơng vị Hƣớng tầm Quảng Ninh SLC 14/05/2017 13.98 2.33 16577 518 x 605 124 SLC 26/05/2017 13.98 2.33 16752 624 x 686 Ninh Thuận SLC 09/10/2017 14.00 2.33 18742 1651 x 1461 126 SLC 21/10/2017 14.00 2.33 19092 1654 x 1460 4.2.2. Ảnh h ng không: Dữ liệu để so sánh là DSM được thành lập từ ảnh hàng không chụp năm 2017 do Xí nghiệp bay chụp và Đo vẽ ảnh của Tổng CT Trắc địa - ản đồ, Cục ản đồ ộ Tổng Tham mưu, QP đã tiến hành bay chụp ảnh các khu vực Quảng Ninh và Ninh Thuận phục vụ cho công tác đo vẽ bản đồ tỷ lệ 1/10 000. Máy chụp ảnh sử dụng là máy chụp ảnh kỹ thuật số Vexcel Ultracam, độ cao bay chụp ảnh: Khu vực Quảng Ninh: 3230m; Khu vực Ninh Thuận:.5850m. Từ tư liệu ảnh, Xí nghiệp đã tiến hành tăng dày và đo vẽ ảnh để thành lập bản đồ tỷ lệ 1/10 000 với khoảng cao đều 5m. 18 Từ tư liệu ảnh hàng không của các khu vực Quảng Ninh và Ninh Thuận, đã tạo được DSM, với kết quả như sau: DSM của Quảng Ninh DSM của Ninh Thuận
File đính kèm:
- tom_tat_luan_an_nghien_cuu_giai_phap_nang_cao_do_chinh_xac_c.pdf