Tóm tắt Luận án Nghiên cứu phương pháp nhận dạng tự động một số đối tượng và xây dựng cơ sở dữ liệu 3D bằng dữ liệu ảnh thu nhận từ thiết bị bay không người lái
Trang 1
Trang 2
Trang 3
Trang 4
Trang 5
Trang 6
Trang 7
Trang 8
Trang 9
Trang 10
Tải về để xem bản đầy đủ
Bạn đang xem 10 trang mẫu của tài liệu "Tóm tắt Luận án Nghiên cứu phương pháp nhận dạng tự động một số đối tượng và xây dựng cơ sở dữ liệu 3D bằng dữ liệu ảnh thu nhận từ thiết bị bay không người lái", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
Tóm tắt nội dung tài liệu: Tóm tắt Luận án Nghiên cứu phương pháp nhận dạng tự động một số đối tượng và xây dựng cơ sở dữ liệu 3D bằng dữ liệu ảnh thu nhận từ thiết bị bay không người lái
các điểm (i = 1 ÷ n) này. Gọi ℎ là độ cao của nền địa hình tại điểm p, ℎ có thể được biểu diễn dưới dạng toán học như sau: ℎ = ݂(ℎ,݀) ݒớ݅ ݅ = 1 ÷ ݊ Trong đó: ℎଵ (i = 1 ÷ n) lần lượt là độ cao của các điểm ଵ (i = 1 ÷ n) ݀ଵ (i = 1 ÷ n) lần lượt là khoảng cách từ điểm p tới các điểm ଵ (i = 1 ÷ n) Chúng ta có thể mô tả mối tương quan giữa điểm p(x,y,h) với các điểm địa hình xung quanh (i = 1 ÷ n) như trên Hình 2.2 Hình 2.2. Mối quan hệ giữa điểm ảnh p với các điểm địa hình xung quanh. (݅ = 1,݊തതതതത) có tọa độ là (ݔ, ݕ,ℎ), với ݔ , ݕ lần lượt là hàng thứ ݔ và cột thứ ݕ. Như vậy, khoảng cách ݀ được tính theo công thức Euclid sẽ là: ݀ = ݀(,) = ඥ(ݔ − ݔ)ଶ + (ݕ − ݕ)ଶ + (ℎ − ℎ)ଶ (2.3) Dựa vào thuật toán nội suy độ cao theo trọng số nghịch đảo khoảng cách (Inverse Distance Weighting (IDW)), độ cao điểm p được tính như sau: w 1 w 1 n n hi iihp ii với 1wi kdi (2.4) Trong đó: pi (i = 1 ÷ n) là các điểm xung quanh đã biết độ cao; wi là trọng số nghịch đảo khoảng cách; hi là độ cao điểm thứ i ; di là khoảng cách từ điểm p đến điểm thứ i và k là hằng số ảnh hưởng (thông thường k được lấy bằng 2). 2.2.4 Sơ đồ thuật toán của chương trình tạo DEM từ dữ liệu DSM Từ các thuật toán đề xuất, tác giả xây dựng chương trình tạo DEM từ DSM theo quy trình dưới đây. -8- Hình 2.3. Sơ đồ thuật toán của chương trình tạo DEM từ DSM Để có thể tái tạo đúng dáng địa hình sau khi đã loại bỏ tập điểm độ cao địa vật ở những khu vực bị che khuất hoàn toàn, cần có tập điểm độ cao địa hình bổ sung ở những khu vực này. Sau đó tập điểm độ cao này sẽ được kết hợp với tập điểm độ cao địa hình được tạo ra từ DSM để thực hiện phép nội suy. 2.3 Kết quả tạo DEM từ DSM bằng thuật toán đề xuất và đánh giá độ chính xác 2.3.1 Kết quả tạo DEM từ DSM Dữ liệu DSM được sử dụng cho thử nghiệm thuật toán là kết quả sau xử lý ảnh UAV khu vực Vật Lại - Ba Vì - Hà Nội. Hình 2.4(a) là mẫu DSM và Hình 2.4(b) là kết quả DEM tạo ra từ DSM bằng thuật toán đề xuất. (a) Hình ảnh DSM dạng 2D và 3D (b) Hình ảnh DEM dạng 2D và 3D Hình 2.4. (a) Mẫu DSM thử nghiệm và (b) Kết quả DEM tạo ra từ DSM Và kết quả so sánh theo mặt cắt địa hình giữa DSM và DEM: Biểu đồ 2.1. So sánh độ cao mặt cắt địa hình DSM và DEM tạo ra. Điểm ảnh so sánh độ cao trên mặt cắt địa hình -9- 2.3.2 Đánh giá độ chính xác kết quả thực nghiệm a. Khả năng xác định các khu vực địa vật, khu vực có độ cao đột biến Về mặt định tính có thể nhìn thấy trên Hình 2.5(b), các khu vực địa vật và khu vực có độ cao đột biến được thuật toán xác định có độ chính xác cao. Về mặt định lượng sẽ được đề cập trong phần đánh giá kết quả DEM tạo ra ở phần sau. (a) (b) Hình 2.5. Kết quả xác định các khu vực địa vật, khu vực có độ cao đột biến. b. Khả năng tái tạo lại nền địa hình Từ kết quả DEM (Hình 2.4(b)) ta nhận thấy: độ chính xác, tính hợp lý hóa nền địa hình được khôi phục phụ thuộc tập điểm độ cao địa hình lọc từ DSM và thuật toán nội suy. c. Độ chính xác bóc tách DEM của chương trình so với kết quả đo đạc thực địa Để đánh giá được độ chính xác kết quả DEM tạo ra từ DSM bằng thuật toán của chương trình, tác giả đã tiến hành đo đạc trực tiếp địa hình tỷ lệ 1: 1000 khu vực thực nghiệm. Chênh độ cao của DEM tạo ra từ DSM so với độ cao địa hình đo đạc trực tiếp đã được đánh giá độ chính xác dọc theo ba mặt cắt địa hình có chiều dài trung bình 270 mét với khoảng cách lấy mẫu độ cao là 1 mét và đánh giá độ chính xác sai số trung phương độ chênh cao trên toàn bề mặt DEM. (a) (b) (c) Hình 2.6. (a) Dữ liệu DSM; (b) Địa hình đo đạc trực tiếp; (c) DEM được tạo từ DSM + So sánh chênh độ cao trên cùng vị trí mặt cắt Kết quả đo đạc trực tiếp địa hình sẽ được nội suy DEM và so sánh với DEM tạo ra từ DSM trên cùng vị trí của ba mặt cắt địa hình (Hình 2.6). Kết quả so sánh chênh độ cao tại các vị trí lấy mẫu trên các mặt cắt địa hình 1-1’; 2-2’ và 3-3’được thể hiện tương ứng trên Biểu đồ 2.3(a,b,c) (trong đó: trục đứng là độ cao địa hình (đơn vị mét); trục ngang là khoảng cách điểm lấy mẫu độ cao trên mặt cắt). -10- Biểu đồ 2.3 (a). So sánh chênh độ cao trên các mặt cắt địa hình 1-1’ Biểu đồ 2.3 (b). So sánh chênh độ cao trên các mặt cắt địa hình 2-2’ Biểu đồ 2.3 (c). So sánh chênh độ cao trên các mặt cắt địa hình 3-3’ Kết quả so sánh cho thấy, chênh cao giữa DEM đo trực tiếp và DEM tạo ra từ DSM bằng thuật toán chương trình lớn nhất trên các mặt cắt như sau: 0.62m; 0.35m; 0.35m tương ứng trên các mặt cắt tương ứng 1-1’; 2-2’ và 3-3’ + So sánh độ cao trên toàn mặt DEM Mẫu DEM tạo ra từ DSM của chương trình và DEM đo đạc thực địa (Hình 2.6) được cắt cùng vị trí với kích thước (984 x 1469) pixel với độ phân giải 0.2m. Sử dụng công thức tính sai số trung phương (Root mean square error (RMSE)) để tính sai số chênh độ cao giữa các mặt DEM như sau. -11- 2( )( , ) ( , )1 1 m n DEM DEMtính i j đo i ji jRMSE m n (2.5) Với: m = 984 là số hàng; n = 1469 là số cột pixel trong mẫu DEM Kết quả tính toán sai số trung phương chênh độ cao giữa DEM tạo ra từ DSM theo thuật toán đề xuất so với DEM đo đạc trực tiếp trên thực địa là 0.23 m. Nhận xét: Độ chính xác độ cao của kết quả đo đạc trực tiếp và độ chính xác độ cao của DSM là hai yếu tố chính ảnh hưởng đến sai số chênh độ cao giữa DEM đo đạc và DEM tạo ra từ chương trình đề xuất. Có thể thấy chênh độ cao giữa DEM đo đạc và DEM tạo ra từ chương trình ở mặt cắt 1-1’ là lớn nhất 0.62m, có thể giải thích như sau: Vị trí có chênh độ cao lớn là những vị trí ao, hồ, vũng lầy có nền đất sụt lún không ổn định, chính vì điều này đã ảnh hưởng đến độ chính xác của kết quả đo đạc trực tiếp. Giá trị chênh độ cao giữa hai kết quả DEM này sẽ càng nhỏ ở những khu vực thoáng đãng và có nền địa hình ổn định. Với các kết quả trên, có thể khẳng định thuật toán của chương trình hoàn toàn áp dụng được để tạo DEM từ dữ liệu DSM với độ chính xác cho phép thành lập CSDL nền địa hình tỷ lệ trung bình và lớn (với khoảng cao đều bình độ 1m trở lên). Tuy nhiên thuật toán tạo DEM từ DSM do tác giả đề xuất vẫn còn có một số hạn chế, đó là: chưa thể tạo DEM tự động trên khu vực có địa hình dốc phức tạp mà vẫn cần công tác tinh chỉnh từ người sử dụng. Chương 3 - NGHIÊN CỨU PHƯƠNG PHÁP NÂNG CAO ĐỘ CHÍNH XÁC NHẬN DẠNG TỰ ĐỘNG ĐỐI TƯỢNG TRÊN ẢNH UAV 3.1 Tổng quan về nhận dạng đối tượng ảnh Theo định nghĩa của Lexing Xie (2009), nhận dạng đối tượng ảnh (object recognition) là quá trình phân loại các đối tượng được biểu diễn theo một mô hình nào đó và gán chúng vào một lớp chuyên đề (gán cho đối tượng một tên gọi) dựa trên những quy luật và các mẫu chuẩn. Có 3 cách tiếp cận thường được sử dụng trong kỹ thuật nhận dạng, đó là: (1) nhận dạng dựa theo không gian; (2) nhận dạng dựa vào kỹ thuật mạng nơ ron và (3) nhận dạng theo cấu trúc đối tượng. Trong nhận dạng ảnh dựa theo cấu trúc đối tượng, thuật toán hay được nhắc đến những năm gần đây là thuật toán phân loại định hướng đối tượng (PLĐHĐT). Thuật toán trong PLĐHĐT không dựa trên các pixel đơn lẻ mà dựa vào toàn bộ đối tượng mà mắt ta có thể nhận biết được trong ảnh. Ngoài giá trị phổ của các pixel, hình dạng của đối tượng (shape), kiến trúc của đối tượng (texture) và mối quan hệ giữa các đối tượng cũng được xem xét phân tích để nhận dạng đối tượng. Đã có nhiều nghiên cứu cho thấy nhận dạng đối tượng theo thuật toán PLĐHĐT cho độ chính xác hơn nhiều so với hai phương pháp nhận dạng (1) và (2) trên ảnh có độ phân giải cao, siêu cao. Tuy nhiên, nghiên cứu nhận dạng đối tượng trên ảnh kỹ thuật số (RGB) thu nhận từ UAV thì chưa có nghiên cứu nào đề cập đến. -12- Do vậy, nghiên cứu nâng cao độ chính xác nhận dạng đối tượng theo thuật toán PLĐHĐT trên ảnh UAV sẽ là một hướng nghiên cứu mới trong luận án. 3.2 Phương pháp nâng cao độ chính xác nhận dạng đối tượng trên ảnh UAV Vì ảnh UAV là ảnh kỹ thuật số, chỉ có 3 kênh phổ (R,G,B) nên khi nghiên cứu nhận dạng đối tượng trên ảnh này sẽ gặp khó khăn, đó là: nếu chỉ dựa vào giá trị độ xám của kênh phổ, một số đối tượng như đường đất, nhà fibro xi măng, mặt nước hay nhà mái bằng và sân xi măng,.v.v. sẽ có giá trị độ xám trên các kênh phổ gần tương đồng nhau, khi đó độ chính xác kết quả nhận dạng đối tượng sẽ không cao. Do vậy, trong nghiên cứu này tác giả đề xuất phương pháp kết hợp giá trị độ xám của ba kênh phổ (R,G,B) và dữ liệu độ cao địa vật (DHM) nhằm nâng cao độ chính xác kết quả nhận dạng đối tượng trên ảnh UAV. 3.3 Thực nghiệm nâng cao độ chính xác nhận dạng đối tượng trên ảnh UAV 3.3.1 Dữ liệu sử dụng Bao gồm: bình đồ ảnh UAV và dữ liệu độ cao địa vật (DHM) được trích xuất từ thuật toán đề xuất ở Chương 2 luận án. (a) (b) Hình 3.1. (a) Dữ liệu ảnh UAV và (b) Dữ liệu DHM khu vực Vật Lại-Ba Vì-Hà Nội 3.3.2 Quy trình nâng cao độ chính xác nhận dạng đối tượng trên ảnh UAV Quy trình thực hiện trên phần mềm eCognition và được minh họa như Hình 3.2 Hình 3.2 Quy trình nâng cao độ chính xác nhận dạng đối tượng bằng thuật toán PLĐHĐT Cụ thể các bước như sau: -13- a. Công tác tiền xử lý dữ liệu Đây là công việc tạo mới một dự án (project) và hiển thị dữ liệu đầu vào trên cửa sổ phần mềm. Dữ liệu đầu vào được sử dụng cho công tác chiết tách đối tượng là bình đồ ảnh trực giao UAV và dữ liệu DHM trong hệ quy chiếu WGS-84. b. Phân mảnh ảnh Phân mảnh (segmentation) là quá trình xác định trên ảnh có bao nhiêu đối tượng, thông qua việc so sánh độ đồng nhất giữa các điểm ảnh và gom các điểm ảnh đồng nhất thành các đối tượng. Các đối tượng xác định ở phần này chưa được định danh, nghĩa là chưa xác định được đây là đối tượng địa lý gì? Thuộc tính của các đối tượng như thế nào?. Tuy nhiên đây là quá trình rất quan trọng trong nhận dạng và độ chính xác của phân mảnh sẽ ảnh hưởng đến độ chính xác về mặt không gian cho các đối tượng được nhận dạng sau này. c. Thiết lập các lớp đối tượng Để phục vụ thành lập CSDL địa hình tỷ lệ lớn, ở đây khu vực thực nghiệm được phân thành các lớp đối tượng như sau: cay_cao; dat_trong; duong; mat_nuoc; nha_fibro ximang; nha_mai_ton; nha_ngoi; nha_tang; san_dat; san; thuc_vat. d. Thiết lập bộ quy tắc và tiến hành xác định lớp cho đối tượng Bộ quy tắc nhận dạng lớp đối tượng được xây dựng dựa trên các chỉ số: giá trị trung bình (Mean) về màu sắc, độ lệch chuẩn (standard deviation), chỉ số màu sắc (Hue, Saturation, Intensity), chỉ số về hình dạng (Geometry), chỉ số về vị trí (Position), chỉ số về mối quan hệ các đối tượng (Relations to neighbor object), và chỉ số độ cao địa vật (DHM).. Bảng 3.1. Bộ quy tắc theo thuật toán PLĐHĐT ảnh UAV kết hợp DHM khu vực thực nghiệm Kết quả phân mảnh ảnh (level_1) (Scale parameter = 50; shape = 0.3; compactness = 0.7) Nhận dạng lần 1 Đối tượng ảnh Tiêu chí 1 Tiêu chí 2 KQ nhận dạng Level_1 (Chưa được nhận dạng) Standard deviation Layer 3 <= 7.35 HSI Transformation Saturation(R=Layer 1,G=Layer 2,B=Layer 3) <= 0.13 mat_nuoc mat_nuoc Mean Layer 4 >= 0.9 không nhận dạng Brightness <= 101 Brightness >= 128.5 Nhận dạng lần 2 Đối tượng ảnh Tiêu chí 1 Tiêu chí 2 KQ nhận dạng Chưa được nhận dạng + không nhận dạng HSI Transformation Saturation(R=Layer 1,G=Layer 2,B=Layer 3) >= 0.236 Mean Layer 4 >= 3 nha_mai_ton HSI Transformation Saturation(R=Layer 1,G=Layer 2,B=Layer 3) <= 0.061 Mean Layer 4 > 1.8 nha_fibro ximang nha_fibro ximang Mean Layer 3 <= 109 không nhận dạng Rectangular Fit <= 0.26 -14- Chưa được nhận dạng + không nhận dạng HSI Transformation Saturation(R=Layer 1,G=Layer 2,B=Layer 3) <= 0.06 Brightness > 130 san Y distance to scene top border < 753 Pxl HSI Transformation Intensity(R=Layer 1,G=Layer 2,B=Layer 3) > 0.78 san Length\Width > 3 không nhận dạng X distance to scene right border > 1039 Pxl Mean Layer 4 > 4 Chưa được nhận dạng + không nhận dạng HSI Transformation Intensity(R=Layer 1,G=Layer 2,B=Layer 3) > 0.709 Mean Layer 4 >= 4.5 nha_tang Brightness >= 160 Mean Layer 4 >= 3 Mean Layer 2 >= 113 Mean Layer 2 <= 200 nha_ngoi nha_ngoi Mean Layer 4 >= 6.5 không nhận dạng Mean Layer 4 <= 3 X distance to scene right border > 845 Pxl Rectangular Fit <= 0.8 Nhận dạng lần 3 Đối tượng ảnh Tiêu chí 1 Tiêu chí 2 KQ nhận dạng Chưa được nhận dạng + không nhận dạng Mean Layer 1 = 4.5 cay_cao HSI Transformation Intensity(R=Layer 1,G=Layer 2,B=Layer 3) <= 0.6 thuc_vat thuc_vat Mean Layer 4 >= 0.65 Mean Layer 4 <= 0.85 không nhận dạng Nhận dạng lần 4 Đối tượng ảnh Tiêu chí 1 Tiêu chí 2 KQ phân loại Chưa được nhận dạng + không nhận dạng HSI Transformation Intensity(R=Layer 1,G=Layer 2,B=Layer 3) > 0.66 Mean Layer 4 <= 1 duong Mean Layer 1 >= 117 Mean Layer 4 <= 1.1 Rel. border to duong > 0 duong Rel. border to dat_trong > 0 dat_trong Chưa được nhận dạng + không nhận dạng HSI Transformation Saturation(R=Layer 1,G=Layer 2,B=Layer 3) >= 0.15 HSI Transformation Saturation(R=Layer 1,G=Layer 2,B=Layer 3) <= 0.5 Y distance to scene top border <= 650 Pxl Mean Layer 1 < 120 san_dat Brightness >= 80 Brightness <= 110 Brightness 0 thuc_vat e. Định danh từng đối tượng địa vật Đối tượng nhận dạng trên ảnh UAV bằng thuật toán PLĐHĐT là các mảnh ảnh liền kề (Hình 3.3(a)) có giá trị ngưỡng về độ xám, độ cao,.v.v. giống nhau được thiết lập trong bộ quy tắc nhận dạng. Chỉnh sửa kết quả chính là việc gộp các mảnh ảnh thành một đối tượng hoặc phân nhỏ mảnh ảnh thành nhiều đối tượng (Hình 3.3(b). -15- (a) (b) Hình 3.3. Gộp mảnh ảnh từ kết quả nhận dạng đối tượng theo lớp Các đối tượng này sau đó được chuyển sang dạng Vector dưới dạng Shapefile, để có thể đưa vào cơ sở dữ liệu dạng thông tin địa lý. f. Đánh giá độ chính xác Để đánh giá độ chính xác kết quả nhận dạng, tác giả đã tiến hành số hóa bình đồ ảnh UAV khu vực thực nghiệm để làm dữ liệu tham chiếu và đồng thời cũng tiến hành nhận dạng trên cùng mẫu ảnh khi không kết hợp với DHM. Kết quả so sánh độ chính xác nhận dạng đối tượng dựa trên hai phương diện là: đánh giá trực quan và đánh giá định lượng. * Đánh giá trực quan Với kết quả nhận dạng đối tượng khi kết hợp bình đồ ảnh với DHM (Hình 3.4(d)), ta thấy các đối tượng mặt nước, nhà mái tôn, mái ngói, nhà fibro ximăng được nhận dạng tốt nhất. Ngoài ra khu vực cây cao, cây bụi cũng được nhận dạng khi có sự bổ sung độ cao từ kênh thông tin của DHM. (a) (b) (c) (d) Hình 3.4. (a) Mẫu ảnh thử nghiệm; (b) Kết quả véc tơ hóa; (c) Kết quả nhận dạng trên bình đồ ảnh UAV đơn thuần; (d) Kết quả nhận dạng khi kết hợp bình đồ ảnh với DHM -16- Trường hợp không kết hợp bình đồ ảnh với DHM (Hình 3.4(c)), kết quả hình ảnh cho thấy các lớp nhận dạng nhầm lẫn rất nhiều, lý do một số đối tượng trên ảnh có màu sắc tương đối giống nhau, như: đường đất, sân đất, đất trống, nhà fibro ximăng cũ, nhà mái ngói cũ. Đối tượng cây cao, cây bụi cũng không thể tách riêng do màu sắc giống các thảm thực vật thông thường và do không có thông tin độ cao địa vật hỗ trợ. * Đánh giá định lượng Tác giả đã tiến hành đánh giá theo hai phương pháp, đó là: đánh giá độ chính xác thông qua sự sai khác về tổng diện tích các đối tượng trên cùng một lớp và đánh giá độ chính xác bằng cách so sánh các đối tượng nhận dạng độc lập trên dữ liệu tham chiếu và dữ liệu nhận dạng + Sự sai khác về tổng diện tích các đối tượng trên cùng một lớp Để đánh giá độ chính xác thông qua so sánh tổng diện tích của từng lớp đối tượng được nhận dạng trên ảnh UAV, tác giả đã tiến hành chồng xếp lớp dữ liệu số hóa tham chiếu, lớp dữ liệu nhận dạng trên ảnh RGB của UAV và dữ liệu nhận dạng trên ảnh RGB khi kết hợp với DHM của cùng khu vực trên phần mềm ArcGis. Với kết quả thống kê độ chính xác nhận dạng đối tượng theo thuật toán PLĐHĐT so với kết quả số hóa tham chiếu trong Bảng 3.2 và Bảng 3.3, ta thấy rằng khi kết hợp ảnh (RGB) của UAV với dữ liệu độ cao địa vật (DHM), các lớp đối tượng trên ảnh sẽ được nhận dạng chi tiết hơn và có tỷ lệ phần trăm tổng diện tích nhận dạng đúng cao hơn khi nhận dạng ảnh UAV không có sự kết hợp cùng dữ liệu DHM cụ thể như một số lớp: nhà fibro xi măng độ chính xác nhận dạng tăng từ 78.47% lên 91.68% , nhà mái ngói tăng từ 52.36% lên 85.04% , nhà mái tôn tăng từ 82.44% lên 97.16 , mặt nước tăng từ 87.16% lên 95.06%. Bảng 3.2. Thống kê độ chính xác tổng thể nhận dạng theo lớp đối tượng trên ảnh UAV khi không kết hợp bình đồ ảnh với DHM so với kết quả số hóa ảnh tham chiếu Ortho_NoDHM Tham chiếu THỰC VẬT ĐẤT TRỐNG NHÀ FIBRO XI MĂNG NHÀ NGÓI NHÀ MÁI TÔN SÂN ĐƯỜNG MẶT NƯỚC Tổng diện tích được nhận dạng theo từng lớp Phần trăm diện tích nhận dạng đúng của mỗi lớp Phần trăm diện tích nhận dạng nhầm (m2) (m2) (m2) (m2) (m2) (m2) (m2) (m2) (m2) (%) (%) Thưc vật (m2) 4578.060 166.125 74.470 120.471 1.909 23.782 58.673 2.083 5025.572 91.10 8.90 Đất trống (m2) 921.583 768.304 15.797 17.012 0.174 20.657 67.526 1.389 1812.442 42.39 57.61 Nhà fibro xi măng (m2) 96.689 0.521 800.245 8.506 0.347 108.667 4.860 0.000 1019.835 78.47 21.53 Nhà ngói (m2) 67.179 17.359 8.679 126.893 0.347 21.699 0.174 0.000 242.330 52.36 47.64 Nhà tôn (m2) 26.559 22.567 0.694 2.951 330.860 11.110 6.596 0.000 401.338 82.44 17.56 Sân (m2) 380.160 137.830 202.752 4.513 1.389 470.079 49.299 0.000 1246.021 37.73 62.27 Đường (m2) 227.575 4.860 62.839 8.159 0.000 32.808 440.742 1.909 778.893 56.59 43.41 Mặt nước (m2) 89.572 4.166 66.137 5.034 0.000 6.770 3.472 1189.084 1364.235 87.16 12.84 Tổng diện tích tham chiếu của mỗi lớp (m2) 6387.377 1121.731 1231.613 293.539 335.027 695.571 631.343 1194.465 11890.665 Phần trăm diện tích nhận dạng đúng so với diện tích tham chiếu (%) 71.67 68.49 64.98 43.23 98.76 69.81 69.81 99.55 Overall Accuracy = 73.20 Phần trăm diện tích không nhận dạng được (%) 28.33 31.51 35.02 56.77 1.24 30.19 30.19 0.45 Kappa = 0.63 -17- Bảng 3.3. Thống kê độ chính xác tổng thể nhận dạng theo lớp đối tượng trên ảnh UAV khi kết hợp bình đồ ảnh với DHM so với kết quả số hóa ảnh tham chiếu + Đánh giá độ chính xác các đối tượng nhận dạng độc lập Ở đây tác giả tiến hành đánh giá độ chính xác nhận dạng các đối tượng độc lập trên một số lớp có phần trăm nhận dạng đúng trên 85%. Kết quả nhận dạng các đối tượng độc lập được so sánh về hình dạng và vị trí của chúng so với kết quả số hóa từ ảnh trên các Hình 3.5 đến Hình 3.9 (a) Đối tượng số hóa (b) Đối tượng nhận dạng (c) Chồng xếp đối tượng Hình 3.5. Kết quả nhận dạng đối tượng nhà mái tôn so với dữ liệu số hóa (a) Đối tượng số hóa (b) Đối tượng nhận dạng (c) Chồng xếp đối tượng Hình 3.6. Kết quả nhận dạng đối tượng mặt nước so với dữ liệu số hóa Ortho+DHM Tham chiếu CÂY CAO THỰC VẬT ĐẤT TRỐNG NHÀ FIBRO XI MĂNG NHÀ NGÓI NHÀ MÁI TÔN NHÀ TẦNG SÂN SÂN ĐẤT ĐƯỜNG MẶT NƯỚC Tổng diện tích được nhận dạng theo từng lớp Phần trăm diện tích nhận dạng đúng của mỗi lớp Phần trăm diện tích nhận dạng nhầm (m2) (m2) (m2) (m2) (m2) (m2) (m2) (m2) (m2) (m2) (m2) (m2) (%) (%) Cây cao (m2) 1138.423 177.570 10.925 0.173 0.347 0.173 0.000 0.000 7.977 1.907 3.121 1340.616 84.92 15.08 Thực vật (m2) 152.772 3271.686 126.068 24.797 0.347 3.642 2.081 21.676 39.537 37.976 6.589 3687.171 88.73 11.27 Đất trồng (m2) 9.711 563.749 1190.965 1.734 0.000 0.000 0.000 12.659 3.815 18.728 2.428 1803.788 66.03 33.97 Nhà bro ximang (m2) 13.699 26.185 0.694 902.414 6.243 0.520 23.930 2.948 6.069 1.561 0.000 984.263 91.68 8.32 Nhà ngói (m2) 0.694 0.000 0.000 29.133 214.852 0.173 3.642 0.520 1.907 1.734 0.000 252.655 85.04 14.96 Nhà tôn(
File đính kèm:
- tom_tat_luan_an_nghien_cuu_phuong_phap_nhan_dang_tu_dong_mot.pdf