Luận án Phân tích dao động và chẩn đoán vết nứt dầm FGM

Luận án Phân tích dao động và chẩn đoán vết nứt dầm FGM trang 1

Trang 1

Luận án Phân tích dao động và chẩn đoán vết nứt dầm FGM trang 2

Trang 2

Luận án Phân tích dao động và chẩn đoán vết nứt dầm FGM trang 3

Trang 3

Luận án Phân tích dao động và chẩn đoán vết nứt dầm FGM trang 4

Trang 4

Luận án Phân tích dao động và chẩn đoán vết nứt dầm FGM trang 5

Trang 5

Luận án Phân tích dao động và chẩn đoán vết nứt dầm FGM trang 6

Trang 6

Luận án Phân tích dao động và chẩn đoán vết nứt dầm FGM trang 7

Trang 7

Luận án Phân tích dao động và chẩn đoán vết nứt dầm FGM trang 8

Trang 8

Luận án Phân tích dao động và chẩn đoán vết nứt dầm FGM trang 9

Trang 9

Luận án Phân tích dao động và chẩn đoán vết nứt dầm FGM trang 10

Trang 10

Tải về để xem bản đầy đủ

pdf 110 trang nguyenduy 17/03/2024 790
Bạn đang xem 10 trang mẫu của tài liệu "Luận án Phân tích dao động và chẩn đoán vết nứt dầm FGM", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

Tóm tắt nội dung tài liệu: Luận án Phân tích dao động và chẩn đoán vết nứt dầm FGM

Luận án Phân tích dao động và chẩn đoán vết nứt dầm FGM
S()  ; 0 SSS 1 ,,0,0,0, 2 3  . 
 Φ 2 (0, )
Giải (2.67) ta đƣợc 
 1
 d  G()  S0 
 29 
sau đó thay vào (2.66) ta nhận đƣợc 
 S1( x ) 1 1 cosh k 1 x 2 2 cosh k 2 x 3 3 cosh k 3 x; 
 S2( x ) 1 cosh k 1 x 2 cosh k 2 x 3 cosh k 3 x ; (2.68) 
 S3( x ) 1 1 sinh k 1 x 2  2 sinh k 2 x 3  3 sinh k 3 x . 
trong đó 
 0 0 0 0 0 0
 1 ()/; 11SSS 1  12 2  13 3 2 ()/; 21SSS 1  22 2  23 3 
 0 0 0
 3 ()/ 31SSS 1  32 2  33 3 ; 
 k112()()() 3 k 223  1 k 331  2 ; (2.69) 
 11 k 33  k 2212    ;; 322 k 23313 k 2 3 ; 
 21 k 11  k 33     22 133 k 311 k  23 () 3 1 ; 
 31 k 22  k 1132   ;;() 211 k 12233 k 1 2 . 
Với các ký hiệu trong (2.69), nghiệm (2.68) có thể đƣợc viết lại dƣới dạng 
 S(xx ) [ΦSˆ ( )]{0 }, (2.70) 
 0 0 0 0 T
trong đó S {,,}SSS1 2 3 và ma trận 
 coshk x cosh k x cosh k x    
 1 1 1 2 2 3 3 111213
 [Φˆ (x )]  cosh k x cosh k x cosh k x    . (2.71) 
 1 2 3 21 22 23 
 1sinhk 1 x  2 sinh k 2 x  3 sinh k 3 x  313233   
Giả sử rằng 
 0 0 0 0
 S1  1 Uxx ( e ), S 2 S 3 2  ( e ) hay S [Σz ]{ 0 (e )} 
với 
 1 00
 Σ 00 , (2.72) 
 2
 00 2
nghiệm riêng zc ()x thoả mãn các điều kiện tại x 0 
 TT
 zzc(0) {1U x ( e ),  2  x ( e ),0} ; c (0) (0,0,  2  x ( e )) , (2.73) 
đƣợc xác định bằng 
 zcc(x ) [Φ ( x )][ Σ ]{ z 00 ( e )} [ G ( x )]{ z ( e )}. (2.74) 
Sử dụng các ký hiệu hàm ma trận 
 30 
 GGcc(x ) : x 0; ( x ) : x 0;
 KK()()xx (2.75) 
 0 :xx 0; 0 : 0;
có thể chứng minh rằng hàm số 
 z()()()()x z00 x K x e z e (2.76) 
là nghiệm tổng quát của phƣơng trình (2.12) thoả mãn các điều kiện (2.57) ở vị trí vết 
nứt. 
 Hơn nữa, giả thiết các điều kiện biên đối với dầm đƣợc biểu diễn bởi 
 B0 z x 0 0 ; B L z x L 0, (2.77) 
trong đó B0, BL là các ma trận toán tử vi phân cỡ (3x3). Cụ thể là 
 Đối với dầm tựa đơn hai đầu 
 ((0,)ut wt (0,) M (0,) t uLt (,) wLt (,) MLt (,) 0) 
 1 0 0 1 0 0
 B  00A ; B  00A ; (2.78) 
 0 22 x L 22 x
 0 0 1 0 0 1
 Đối với dầm công xôn ((0,)ut wt (0,)  (0,) t NLt (,) MLt (,) QLt (,) 0) : 
 1 0 0 A11 x 00
 B 0 1 0 ; B  00A ; (2.79) 
 0 L 22 x
 0 0 1 0 AA33 33 x
 Dầm ngàm hai đầu ((0,)utwt (0,)  (0,) tuLtwLt (,) (,) (,) Lt 0): 
 1 0 0
 BBI 0 1 0 . (2.80) 
 0 L 3 
 0 0 1
Vì số hạng thứ hai trong (2.76) thoả mãn mọi điều kiện tầm thƣờng ở vị trí x = 0, áp 
dụng điều kiện đầu tiên của (2.77) cho nghiệm (2.76) dẫn đến 
 BCBC01 1 02 2 0 , (2.81) 
 TT
với CC1 {,,};{,,}CCCCCC 1 2 3 2 4 5 6 và 
 BB01()(,);()(,) 0 ΦBBΦ 1xx  xx 0 02  0 2   0 . (2.82) 
Rõ ràng, phƣơng trình (2.81) cho phép giản lƣợc bớt một trong các véc tơ CC12, và 
khi đó nghiệm z0 ()x có thể đƣợc biểu diễn lại dƣới dạng 
 z 00(,)(,)xx ΦD, (2.83) 
 31 
 T
 Φ0 (,)x  là hàm ma trận kích thƣớc (3x3) và D {,,}DDD1 2 3 là véc tơ hằng số. 
Thay (2.83) vào phƣơng trình (2.76) ta đƣợc 
 z()[x ΦKΦDGD0 (,) x ( x e ) 0 (,)]{}[ e  L (,)]{} x  . (2.84) 
Áp dụng điều kiện biên thứ hai trong (2.77) đối với nghiệm (2.84) thu đƣợc 
 [BDLL )]{ } 0 , (2.85) 
 BBGLL()(,) L L x  xL . (2.86) 
Khi đó phƣơng trình đặc trƣng hay còn gọi là phƣơng trình tần số của dầm FGM bị nứt 
đƣợc xác định nhƣ sau 
 ( ) det[BLL ( )] 0. (2.87) 
Mỗi nghiệm  j của phƣơng trình này là một tần số riêng của dầm tƣơng ứng với một 
dạng dao động riêng 
 j()(,)x C jGDL x j j , (2.88) 
trong đó C j là hằng số tuỳ ý và D j là nghiệm đƣợc chuẩn hoá của phƣơng trình (2.85) 
tƣơng ứng với mỗi tần số riêng  j . 
 Trong trƣờng hợp dầm nguyên vẹn, phƣơng trình tần số (2.86) đƣợc giản lƣợc 
thành 
 00( ) det[BL ( )] 0 . (2.89) 
 BBL0()(,) L Φ0 x  xL . (2.90) 
Do đó, bài toán đặt ra ở đây bao gồm tính các tần số và dạng riêng của dầm phụ thuộc 
vào các tham số vết nứt có thể tìm đƣợc bằng cách sử dụng các phƣơng trình (2.85) và 
(2.87). Các phƣơng trình này sẽ đƣợc áp dụng để tính toán số trong các chƣơng sau. 
2.3.3. Bài toán chẩn đoán vết nứt trong dầm FGM 
 Trong phần này, chúng ta đặt bài toán ngƣợc: xác định vị trí và chiều sâu vết nứt 
khi biết các tần số riêng. Trƣớc tiên, ta tìm đƣợc biểu thức giải tích của phƣơng trình 
tần số (2.85), từ biểu thức tính ma trận BLL() cho trong (2.86). Sử dụng các ký hiệu 
đƣợc đƣa ra trong (2.84) và (2.90) ta tính đƣợc 
 BBGBBLL()(,)()()(,) L Lxe  xL L0  LC  Φ 0  , (2.91) 
trong đó 
 32 
 BBGLC()(,) L C x  xL . 
 Ký hiệu các phần tử của ma trận Φ()x là  jk (x ); j , k 1, 2, 3 ta đƣợc 
 1  11  2(  12  13 ) 0
 G (x , )    (   ) 0 (2.92) 
 C 1 21 2 22 23
 1  31  2(  32  33 ) 0
do đó 
 1hh 11(  )  2 12 (  ) 0
 BBG( ) (x ,  )  h (  )  h (  ) 0 . (2.93) 
 LC L C xL 1 21 2 22
 1hh 31(  )  2 32 (  ) 0
Ta đƣợc, 
 L
 BBBGLL() L0 ()  LC ()  0 (,)[e  bjk ,, j k 1,2,3] , (2.94) 
trong đó 
 L 0
 b11 b 11()  1 g 11 ()() e h 11   2 g 21 ()(); e h 12  
 L 0
 b12 b 12()  1 g 12 ()() e h 11   2 g 22 ()(); e h 12  
 L 0
 b13 b 13()  1 g 13 ()() e h 11   2 g 23 ()(); e h 12  
 L 0
 b21 b 21()  1 g 11 ()() e h 21   2 g 21 ()(); e h 22  
 L 0
 b22 b 22()  1 g 12 ()() e h 21   2 g 22 ()(); e h 22  (2.95) 
 L 0
 b23 b 23()  1 g 13 ()() e h 21   2 g 23 ()(); e h 22  
 L 0
 b31 b 31()  1 g 11 ()() e h 31   2 g 21 ()(); e h 32  
 L 0
 b32 b 32()  1 g 12 ()() e h 31   2 g 22 ()(); e h 32  
 L 0
 b33 b 33()()()()()  1 g 13 e h 31   2 g 23 e h 32  . 
Tính định thức của ma trận BLL () cho ta 
 ()det[ BLL ()]  d 0 ()   11 d (,) e   22 d (,) e   1212  d (,) e  , (2.96) 
trong đó 
 d0 det[B L0 ( )]; 
 d1 H 11 g 11 H 12 g 12 H 13 g 13 ; 
 d2 H 21 g 21 H 22 g 22 H 23 g 23 ; (2.97) 
 d12 Hgg 31()()() 11 22 gg 21 12 Hgg 32 11 23 gg 21 13 Hgg 33 12 23 gg 13 22 . 
 33 
 Các ký hiệu Hjk , j , k 1, 2, 3 trong (2.97) đƣợc xác định là 
 00 00
 h11 b 12 b 13 b11 h 11 b 13
 00 00
 H11 det h 21 b 22 b 23 ; H12 det b 21 h 21 b 23 ; 
 00 00
 h31 b 32 b 33 b31 h 31 b 33
 00 00
 b11 b 12 h 11 h12 b 12 b 13
 00 
 H det b b h 00
 13 21 22 21 ; H21 det h 22 b 22 b 23 ; (2.98) 
 b00 b h 00
 31 32 31 hbb32 32 33
 00 00
 b11 h 12 b 13 b11 b 12 h 12
 00 00
 H12 det b 21 h 22 b 23 ; H13 det b 21 b 22 h 22 ; 
 00 00
 b31 h 32 b 33 b31 b 32 h 32
 0 0 0
 h11 h 12 b 13 h12 b 12 h 11 b11 h 11 h 12
 0 0 0
 H31 det h 21 h 22 b 23 ; H32 det h 22 b 22 h 21 ; H33 det b 21 h 21 h 22 . 
 0 0 0
 h31 h 32 b 33 h32 b 32 h 31 bhh31 31 32
 Tiếp theo, giả sử rằng có ba tần số riêng 1,, 2 3 (là các giá trị xác định dƣơng 
khác nhau), thay chúng vào (2.96) thu đƣợc ba phƣơng trình 
 d0()k  1 d 1 (,) e  k  2 d 2 (,) e  k  1  2 d 12 (,)0, e  k k 1,2,3. (2.99) 
Ký hiệu 3  1  2 , phƣơng trình (2.99) có thể viết lại dƣới dạng 
 ak1() e 1 a k 2 () e  2 a k 3 () e  3 b 0 k , k 1,2,3; (2.100) 
 b0k d 0(); k ade 1 k 1 (,);  k ade 2 k 2 (,);  k ade 3 k 12 (,);  k k 1,2,3. (2.101) 
Hệ phƣơng trình tuyến tính (2.100) có thể dễ dàng giải đƣợc nghiệm theo 1,,  2  3 và 
các kết quả có dạng 
 1 1/  1 ();e  2 2 /  2 (); e  3 3 /  3 () e , (2.102) 
trong đó 1,,,  2  3  là các định thức của các ma trận (2.98) 
 b01 a 12 a 13 a11 b 01 a 13
  det b a a ;  det a b a ; 
 1 02 22 23 2 21 02 23
 b03 a 32 a 33 a31 b 03 a 33
 34 
 a11 a 12 b 01 a11 a 12 a 13
  det a a b ;  det a a a . (2.103) 
 3 21 22 02 21 22 23
 a31 a 32 b 03 a31 a 32 a 33
 Chú ý rằng 3  1  2 , ta đƣợc 
 (e ) 1 ( e )  2 ( e )  3 ( e ) 0, (2.104) 
(2.104) cho ta phƣơng trình xác định vị trí vết nứt e. Thay nghiệm ê của phƣơng trình 
(2.104) vào (2.102), độ lớn vết nứt có thể đƣợc xác định 
 ˆˆ1  1(eeˆˆ );  2  2 ( ), (2.105) 
khi đó chiều sâu vết nứt a tìm đƣợc từ phƣơng trình 
 F1() a  1 ()0;() eˆˆ F 2 a 2 ()0 e 
hay 
 22
 [()F1 a  1 ()] eˆˆ [() F 2 a 2 ()] e min . (2.106) 
 a
Trong trƣờng hợp cụ thể, nếu vết nứt đƣợc mô hình hoá bởi chỉ một lò xo xoắn, tức là 
 1 0, phƣơng trình đặc trƣng (2.96) tối giản thành 
 d0( )  2 d 2 ( e ,  ) 0 . (2.107) 
Trong trƣờng hợp này, để nhận dạng vết nứt đơn, ta cần đo đƣợc hai tần số 12, từ 
đó cho hai phƣơng trình 
 d0() 1  2 d 2 (,)0,() e  1 d 0  2  2 d 2 (,)0 e  2 . (2.108) 
Thực vậy, từ các phƣơng trình này ta đƣợc 
 2 d 0()/(,)()/(,)()  1 d 2 e  1 d 0  2 d 2 e  2 ˆ 2 e (2.109) 
dẫn đến 
 d0()(,) 1 d 2 e  2 d 0 ()(,)0  2 d 2 e  1 . (2.110) 
 Giải phƣơng trình (2.110) cho nghiệm e tại vị trí vết nứt eˆ và từ đó tính đƣợc độ 
lớn vết nứt 
 ˆˆ22 ()eˆ . (2.111) 
 Cuối cùng, độ sâu vết nứt đƣợc xác định là nghiệm của phƣơng trình 
 Fa22( ) ˆ 0. (2.112) 
Nhƣ vậy, bài toán xác định vết nứt trong dầm FGM Timoshenko đƣợc giải hoàn toàn. 
 35 
 Kết luận Chƣơng 2 
 Trong chƣơng này, tác giả đã xây dựng đƣợc các phƣơng trình cơ bản để tính 
toán dao động của dầm FGM tính đến vị trí thực của trục trung hòa. Ở đây, bài toán 
dao động riêng đã đƣợc giải quyết khá trọn vẹn: phƣơng trình tần số và dạng dao động 
riêng đã đƣợc xây dựng ở dạng hiển. Đồng thời đã thiết lập đƣợc các công thức để 
nghiên cứu hàm đáp ứng tần số hay còn gọi là hàm truyền là chìa khóa để nghiên cứu 
dao động cƣỡng bức cũng nhƣ nghiên cứu thực nghiệm đối với dầm FGM. Đặc biệt, 
đã xây dựng đƣợc ma trận độ cứng động lực cho dầm FGM là công cụ để phát triển 
phƣơng pháp độ cứng động cho các kết cấu khung làm từ vật liệu FGM. 
 Quan trọng hơn cả là trong chƣơng này, đã xây dựng đƣợc mô hình dầm FGM có 
vết nứt, đƣợc mô tả đồng thời bằng hai lò xo dọc trục và lò xo xoắn tƣơng ứng với hai 
dạng dao động dọc trục và dao động uốn trong dầm FGM. Mô hình này cho phép ta 
nghiên cứu chi tiết ảnh hƣởng của vết nứt cùng với các tham số vật liệu FGM đến tần 
số và dạng riêng của dầm ở chƣơng sau. Đồng thời, ở đây cũng đã đề xuất một phƣơng 
pháp xác định vị trí và độ sâu của một vết nứt trong dầm FGM bằng 3 tần số. Kết quả 
này cũng đƣợc minh họa bằng số ở các Chƣơng tiếp theo sau. 
 Tóm lại, kết quả chủ yếu của chƣơng này là xây dựng cơ sở lý thuyết để giải bài 
toán dao động của dầm FGM có vết nứt trong miền tần số. 
 36 
 CHƢƠNG 3. SỰ TƢƠNG TÁC GIỮA DAO ĐỘNG DỌC TRỤC VÀ DAO 
 ĐỘNG UỐN TRONG DẦM FGM 
 Trong Chƣơng này, trƣớc hết chúng ta xây dựng công thức xác định vị trí chính 
xác của trục trung hòa cho dầm FGM có thiết diện là hình chữ nhật, tức có một trục 
đối xứng là trục giữa dầm. Trên cơ sở đó, chúng ta nhận đƣợc điều kiện để dao động 
đọc trục tách rời khỏi dao động uốn của dầm FGM. Những dầm FGM trong đó dao 
động dọc trục và dao động uốn không tƣơng tác với nhau gọi là dầm FGM tỷ lệ. Dựa 
trên các công thức chung cơ bản nhận đƣợc, chúng ta nghiên cứu chi tiết các tham số 
của dầm FGM, trong đó có các đặc trƣng sóng và hệ số tƣơng tác giữa các thành phần 
dao động nói trên phụ thuộc vào các tham số vật liệu. Cuối cùng trong Chƣơng này, 
nghiên cứu chi tiết dao động uốn tự do của dầm FGM tỷ lệ. 
3.1. Điều kiện không tƣơng tác giữa dao động dọc trục và dao động uốn 
 Theo định nghĩa, mặt trung hoà của dầm là mặt mà trên đó ứng suất pháp bằng 
không, xx = 0, nó chia dầm thành hai phần chỉ chịu kéo hoặc nén. Trục trung hoà đối 
với các dầm phẳng theo lý thuyết cổ điển luôn đƣợc giả thiết nằm ở mặt giữa dầm, tuy 
nhiên đối với các trƣờng hợp dầm khác vị trí của nó có thể thay đổi tới vị trí bên trên 
hoặc dƣới so với vị trí mặt giữa. Giả sử, đối với dầm FGM, vị trí của trục trung hoà kể 
từ mặt giữa là h0, và đƣợc xác định từ điều kiện: 
 h/2
 b E( z )( z h ) dz 0
 0 , (3.1) 
 h/2
cụ thể là 
 hh/2 /2
 h E()/() z zdz E z dz
 0 . (3.2) 
 hh/2 /2
 Trong trƣờng hợp vật liệu FGM tuân theo luật lũy thừa ta tính đƣợc 
 n( Re 1) h
 h0 ,/ Re E t E b . (3.3) 
 2(n 2)( n Re )
Nếu EEEtb , tức là Re 1 dẫn đến h0 0 , tức là trục trung hoà trùng với trục giữa 
của dầm khi dầm là đồng nhất. Đại lƣợng không thứ nguyên h00 h/ h phụ thuộc vào 
các tham số vật liệu n và tỷ số mô đun đàn hồi đƣợc minh hoạ trong hình 3.1 - 3.2. 
 37 
 0.25
 The shift of central axes 
 0.2
 7 8 9 10
 6
 0.15 5
 4
 ho/h
 Et/Eb=3
 0.1
 Et/Eb=2
 0.05
 Et/Eb=1
 0
 0 2 4 6 8 10 n 12 14 16 18 20 
 Hình 3.1. Vị trí trục trung hoà phụ thuộc vào số mũ n với các giá trị 
 tỷ số mô đun đàn hồi khác nhau. 
 0.15 
 0.1
 0.05
 0 n = 1
 h0/h 2
 3
 -0.05
 4
 5
 -0.1 6
 7
 8
 -0.15
 9
 r=Etop/Ebottomr = Et/Eb 10 r=E1/E2rr=E1/E2
 -0.2 
 0 1 2 3 4 5 
 Hình 3.2. Vị trí trục trung hoà phụ thuộc vào tỷ số mô đun đàn hồi với 
 các số mũ n khác nhau. 
 Dễ dàng nhận thấy, đối với tỉ số mô đun đàn hồi bất kỳ, có thể thấy rằng sự thay 
đổi trục trung hoà đạt cực đại khi tham số nR 2 e và sự thay đổi tăng nhanh với số 
mũ nhỏ hơn 1 và sau đó tăng chậm với sự tăng lên của tham số. Sự thay đổi vị trí của 
trục trung hoà phụ thuộc vào tỉ số mô đun đàn hồi trên thực tế là đều và sẽ tăng khi tỷ 
số này tăng lên. Hơn nữa, có thể thấy rằng sự thay đổi vị trí trục trung hoà tăng chậm 
 38 
khi tỉ số mô đun đàn hồi lớn hơn 1 với số mũ n bằng 1 và 2 so với số mũ cao hơn. 
Trong trƣờng hợp tỷ số nhỏ hơn 1, nói chung dễ dàng nhận thấy vị trí trục trung hoà 
tăng nhanh với n = 1, 2. Nói chung, vị trí trục trung hoà sẽ dịch chuyển lên trên hoặc 
xuống dƣới phụ thuộc vào mô đun đàn hồi nào (Et hoặc Eb) là lớn hơn. 
 Với vị trí trục trung hòa h0 tìm đƣợc trong công thức (3.3) thì hệ số A12 = 0 và do 
đó phƣơng trình dao động tự do của dầm FGM đƣợc viết lại thành 
 I11 u A 11 u I 12 0; 
 I12 u ( I 22 A 22  ) A 33 ( w  ) 0 ; (3.4) 
 I11 w A 33( w  ) 0, 
trong đó 
 A11 EAFnR 1(,);eg I 11 AFnR 1 (,); A 33 GAFnR 1 (,) ; 
 I12 AhF 2 ( n , R ); I22 IF 3( n , R ); A22 EIF 3 ( n , Re ); (3.5) 
 EEE (tb ) / 2; ( tb ) / 2; GGG (tb ) / 2; 
 REERe t/;/; b t b RGGg t/; b 1/ 2 h0 ; h 0 h 0 / h . 
 2(nR ) 1  (2R n ) ( R n ) 
 F1(,); n R F2 (,) n R ; (3.5) 
 (nR 1)(1 ) (R 1)  ( n 2) ( n 1)( R 1)
 24  (n 3 R ) ( n 2 R )2 ( n R )
 F3 (,) n R  . 
 R 1  3( n 3) ( n 2) ( n 1)
 Dễ dàng nhận thấy nếu I12 0, thì phƣơng trình (3.4) có thể đƣợc rút gọn hơn 
nữa thành 
 I11 u A 11 u 0;
 (I A  ) A ( w  ) 0; (3.6) 
 22 22 33
 I11 w A 33 ( w  ) 0.
Rõ ràng, phƣơng trình đầu tiên trong (3.6) là phƣơng trình dao động dọc trục thuần túy 
đã đƣợc nghiên cứu đầy đủ trong Động lực học công trình. Hai phƣơng trình sau có 
dạng hoàn toàn tƣơng tự phƣơng trình dao động uốn của dầm Timoshenko (tuy nhiên 
các hệ số của phƣơng trình này phụ thuộc vào các tham số vật liệu FGM). Nhƣ vậy, 
trong trƣờng hợp này dao động dọc trục và dao động uốn của dầm FGM đã tách rời 
hoàn toàn. Do đó điều kiện tách rời hay không tƣơng tác của dao động dọc trục và dao 
 39 
động uốn trong dầm FGM là cùng với A12 0 đã thoả mãn khi tính đến vị trí 
thực của trục trung hòa. 
 Sử dụng công thức (3.3) cho vị trí trục trung hòa, ta ta có thể biểu diễn I12 trong 
(3.5) ở dạng 
 Ah be() R R n
 I12 ; . (3.7) 
 2(2 n )( Re n )
Dễ dàng nhận thấy I12 0 khi n 0 hoặc RR e . 
 Trƣờng hợp n 0 , khi vật liệu là đồng nhất thì sự độc lập giữa dao động dọc trục 
và dao động uốn trong dầm đồng nhất đã đƣợc biết đến và sử dụng từ rất sớm. Trƣờng 
hợp thứ hai, điều kiện không tƣơng tác giữa dao động dọc trục và dao động uốn là 
 RRe . (3.8) 
 Nhƣ vậy, dầm FGM thỏa mãn điều kiện (3.8) có thể gọi là dầm FGM tỷ lệ 
(Proportionally Functionally Graded Beam - PFG Beam) và tỷ số r Re / R gọi là hệ 
số tỷ lệ của vật liệu. 
 0.15 
 n=4
 0.1
 10
 0.05
 0
 I12 20 3
 ro =1
 -0.05
 0.5
 tươngtác 
 ố -0.1
 s
 ệ
 Coupling coefficient
 H 1/3
 -0.15
 -0.2
 0.1
 -0.25
 -0.3 
 0 0.05 0.1 0.15 0.2 0.25
 Neutral axis dislocation
 Vị trí trục trung hoà 
 Hình 3.3. Hệ số tƣơng tác I12 là hàm của vị trí trục trung hoà với n = 4 và các tỷ số mật 
 độ khối khác nhau. 
 40 
 0.2 
 ro=10
 0.1
 n=10
 0
 3
 2
 n=1
 -0.1
 tươngtác 
 1/2
 ố
 s
 1/3
 ệ
 H -0.2
 Coupling coefficient 1/4
 0.1
 -0.3
 -0.4
 -0.5 
 0 0.05 0.1 0.15 0.2 0.25
 Neutral axis dislocation
 Vị trí trục trung hoà 
 Hình 3.4. Hệ số tƣơng tác I12 là hàm của vị trí trục trung hoà với r = 10 
 và các chỉ số mũ n khác nhau. 
 Để nghiên cứu kỹ hơn điều kiện không tƣơng tác (3.8) chúng ta sẽ khảo sát hệ số 
tƣơng tác [27] 
 I
 I 12 (3.9) 
 12 Ah 
và chú ý đến (3.8) ta đƣợc 
 nR( 1) 2h0
 I12 . (3.10) 
 (n 2)( n 1)( R n ) h ( n 1)
Xét hệ số (3.10) là hàm của vị trí trục trung hòa ứng với các giá trị ro = R khác nhau 
với n cố định và n khác nhau với ro = R cố định. Hình vẽ 3.3 – 3.4 trình bày sự phụ 
thuộc của hệ số tƣơng tác vào vị trí trục trung hòa ứng với các giá trị khác nhau của tỷ 
số khối lƣợng riêng và chỉ số số mũ n. Từ các hình vẽ cho thấy hệ số tƣơng tác phụ 
thuộc tuyến tính vào độ lệch vị trí trục trung hoà, tuy nhiên, độ dốc của đƣờng đồ thị 
phụ thuộc chủ yếu vào các tham số vật liệu và R tb/ . Đối với mọi n, độ dốc hầu 
nhƣ là không đổi nhƣng đối với tỷ số không đổi R hệ số giảm khi n tăng lên. 
 41 
3.2. Dao động uốn thuần túy của dầm FGM 
 Do lý thuyết dao động dọc trục đƣợc mô tả bởi phƣơng trình thứ nhất trong (3.6) 
đối với dầm đồng nhất đã đƣợc phát triển nhiều, trong nghiên cứu này chỉ tập trung 
nghiên cứu dao động uốn độc lập cho bởi các phƣơng trình cuối trong (3.6). Lƣu ý 
rằng các phƣơng trình này đã đƣợc Li nghiên cứu chi tiết trong [40], nhƣ tác giả đã giả 
thiết rằng chuyển vị dọc trục có thể bỏ qua và khi đó hệ số tỷ lệ R 1.03 . Tức dầm có 
thể coi gần đúng là dầm FGM tỷ lệ. Ở đây chúng ta sẽ khảo sát dao động uốn của dầm 
FGM tỷ lệ chính xác đƣợc mô tả bằng hai phƣơng trình cuối trong (3.6). 
 Nghiệm của các phƣơng trình cuối trong (3.6) đƣợc tìm dƣới dạng 
 (,)();(,)()x t  x ei t w x t W x e i t . (3.11) 
 Do đó ta thu đƣợc 
 (2IAAW  ) (  ) 0
 22 22 33 ; (3.12) 
 2
  IWAW11 33 (  ) 0
 Sử dụng ký hiệu véc tơ z {,}W T và ma trận 
 2
 A22 0 0 A33 ( IA22 33 ) 0
 A2 ; A1 ; A0 2 ; (3.13) 
 0 A33 A33 0 0  I11
 Phƣơng trình (3.12) có thể đƣợc viết lại dƣới dạng ma trận nhƣ sau 
 A2 z A 1 z A 0 z 0. (3.14) 
 x
 Nghiệm của phƣơng trình (3.14) có thể tìm ở dạng zd0 e , khi đó phƣơng trình 
này đƣa đến hệ phƣơng trình đại số tuyến tính 
 2
 [A2 A 1 A 0 ] d 0 . (3.15) 
 Phƣơng trình (3.15) cho ta nghiệm không tầm thƣờng nếu thỏa mãn điều kiện 
 2
 det[AAA2 1 0 ] 0, (3.16) 
 Khai triển phƣơng trình đặc trƣng và biểu diễn dƣới dạng 
 42 ab 0 , (3.17) 
trong đó 
 2 22
 a  (//) I11 A 33 I 22 A 22 ;b ( I11 / A 33 )( I 22 / A 22 A 33 / A 22 ) . (3.18) 
 Nói chung, phƣơng trình (3.17) có nghiệm dƣới dạng 
 22
 1,2 ( a a 4 b ) / 2 1,2 . (3.19) 
 42 
 Chú ý rằng phƣơng trình đầu tiên của (3.17) có thể cho nghiệm tầm thƣờng (λ = 
 2
0) với điều kiện b 00  I22 A 33 hay 
  c AI33/ 22  2 , (3.20) 
đƣợc gọi là tần số cắt của dầm. Mặt khác, phƣơng trình (3.17) có bốn nghiệm ảo với 
 c và có hai nghiệm thực nếu  c . Do đó, bốn nghiệm của phƣơng trình này là 
 1,3 k 1;  2,4 k 2 ; kjj  , j 1,2 (3.21) 
và nghiệm tổng quát của phƣơng trình (3.14) có thể biểu diễn dƣới dạng 
  d ek1 x d e k 2 x d e k 1 x d e k 2 x
 z  11 12 13 14  . (3.22) 
 k1 x k 2 x k 1 x k 2 x
 W d21 e d 22 e d 23 e d 24 e
Chú ý tới phƣơng trình thứ hai trong (3.14) ta có 
 d21 1 d 11,,, d 22 2 d 12 d 23 1 d 13 d 24 2 d 14 , (3.23) 
trong đó 
 2 2 2 2
 1 k 1 A 33/ (  I 11 k 1 A 33 ), 2 k 2 A 33 / (  I 11 k 2 A 33 ) . (3.24) 
Vì thế, biểu thức (3.22) có thể đƣợc viết lại dƣới dạng 
 z(,)(,)xx G d, (3.25) 
 TT
với d (d1 ,..., d 4 ) ( d 11 ,..., d 14 ) và 
 GGG(,)[x 12 (,) x  (,)] x  ; 
 ek1 x e k 2 x e k 1 x e k 2 x 
 GG12(,);(,)xx . (3.26) 
 k1 x k 2 x k 1 x k 2 x 
 1e 2 e 1 e 2 e 
 Nghiệm (3.25) phải thoả mãn các điều kiện biên tại các đầu của dầm có thể biểu 
diễn dƣới dạng 
 B0 z x 0 0 ; B L z x L 0, (3.27) 
 Trong đó B0, BL là các toán tử vi phân kích thƣớc 2x2. Cụ thể, các toán tử B0, BL 
lần lƣợt đối với các điều kiện biên tƣơng ứng với các trƣờng hợp liên kết tại các đầu 
của dầm là tựa đơn, ngàm hai đầu và tự do là 
 A22 x 0 1 0 A22 x 0
 BBBs ;; c e . 
 0 1 0 1 AA33 33 x
 T TT
 Đặt d {,} d12 d với dd1 {,};{,}d 1 d

File đính kèm:

  • pdfluan_an_phan_tich_dao_dong_va_chan_doan_vet_nut_dam_fgm.pdf
  • pdftrang thong tin dong gop moi.pdf
  • pdfTrich yeu luan an.pdf
  • pdfTT NN Huyen-EN.pdf
  • pdfTT NN Huyen-TV.pdf